K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 7 2015

Do tổng 3 số là một số lẻ nên 3 số gồm: 2 chẵn + 1 lẻ hoặc 3 lẻ

+TH1: 2 số chẵn và 1 số lẻ. Do vai trò của a, b, c là như nhau nên ta giả sử \(a=2x;\text{ }b=2y;\text{ }c=2z+1\) (a và b chẵn; c lẻ).

\(2007=\left(2x\right)^2+\left(2y\right)^2+\left(2z+1\right)^2=4x^2+4y^2+4z^2+4z+1\)

\(\Rightarrow4\left(x^2+y^2+z^2+z\right)=2006\)

Vế trái chia hết cho 6 mà vế phải không chia hết cho 6 => không tồn tại các số nguyên x, y, z => không tồn tại các số nguyên a, b, c.

+TH2: 3 số đều lẻ.

Giả sử \(a=2x+1;b=2y+1;c=2z+1\)

\(2007=\left(2x+1\right)^2+\left(2y+1\right)^2+\left(2z+1\right)^2=4x^2+4x+1+4y^2+4y+1+4z^2+4z+1\)

\(\Rightarrow4\left(x^2+x+y^2+y+z^2+z\right)=2004\)

\(\Rightarrow x\left(x+1\right)+y\left(y+1\right)+z\left(z+1\right)=501\)

+Do x và x+1 là 2 số nguyên liên tiếp nên 1 trong 2 số là số chẵn => tích của chúng là số chẵn hay x(x+1) chẵn.

Tương tự y(y+1) và z(z+1) đều chẵn

=> Vế trái chẵn và vế phải = 501 là một số lẻ

=> không tồn tại x, y, z nguyên.

=> không tồn tại các số nguyên a, b, c thỏa mãn.

Vậy: không tồn tại các số nguyên a, b, c thỏa \(a^2+b^2+c^2=2007\)

14 tháng 7 2015

Cảm ơn Mr Lazy nha, nhưng mình vừa biết làm xong, bạn giải giùm mình bài này nhé http://olm.vn/hoi-dap/question/128897.html

AH
Akai Haruma
Giáo viên
6 tháng 1

Lời giải:

Không mất tổng quát giả sử $a\leq b\leq c$

Nếu $a,b,c$ đều là số nguyên tố lẻ thì $a^2+b^2+c^2$ là số lẻ. Mà $5070$ chẵn nên vô lý.

Do đó trong 3 số $a,b,c$ tồn tại ít nhất 1 số chẵn.

Số nguyên tố chẵn luôn là số bé nhất (2) nên $a=2$

Khi đó: $b^2+c^2=5070-a^2=5066\geq 2b^2$

$\Rightarrow b^2\leq 2533$

$\Rightarrow b< 51$

$\Rightarrow b\in \left\{2; 3; 5; 7; 11; 13; 17; 19; 23; 29; 31; 37; 41; 43; 47\right\}$

Thử các TH này ta thấy $(b,c)=(5,71), (29,65)$
Vậy $(a,b,c)=(2,5,71), (2,29,65)$ và các hoán vị.

vì 5070 là số chẵn ⇒ một trong 3 số a,b,c chẵn hoặc cả 3 số a,b,c chẵn 

+) cả 3 số a,b,c chẵn

=> a=2, b=2, c=2 ( vì a,b,c là các số nguyên tố )

khi đó: a2+b2+c2= 12(loại)

=> một trong 3 số a,b,c chẵn 

vì giá trị các số bằng nhau, giả sử a chẵn => a=2

khi đó: a2+b2+c2= 4+b2+c2

=> b2+c2= 5066

vì số chính phương có tận cùng là 0, 1, 4, 5, 6, 9 mà b2 và c2 là số chính phương có tận cùng là 0, 1, 4, 5, 6, 9 

=> bvà c2 có tận cùng là 0, 1, 4, 5, 6, 9 

Mà b và c lẻ 

=> bvà c2 có tận cùng là 1, 5, 9 

mà 5066 có tận cùng là 6

=> bvà c2 có tận cùng là 1, 5

=> b và c có tận cùng là 1, 5

giả sử b có tận cùng là 5=> b=5

khi đó: 25+ c= 5066

                   c= 5041=712

=> c = 71

vậy, a=2, b=5, c=71 và các hoán vị của nó

NV
29 tháng 3 2023

Nếu a;b;c cùng lẻ \(\Rightarrow a^2+b^2+c^2\) lẻ, mà 1386 chẵn nên ko thỏa mãn

\(\Rightarrow\) Trong 3 số a;b;c phải có ít nhất 1 số chẵn, không mất tính tổng quát, giả sử c chẵn. Mà c là số nguyên tố \(\Rightarrow c=2\)

\(\Rightarrow a^2+b^2+4=1398\Rightarrow a^2+b^2=1394\)

Mặt khác một số chính phương chia 5 chỉ có các số dư 0,1,4

Mà \(1394\) chia 5 dư 4 \(\Rightarrow a^2+b^2\) chia 5 dư 4

\(\Rightarrow\) Trong 2 số \(a^2\) và \(b^2\) một số chia 5 dư 0, một số chia 5 dư 4

Hay trong 2 số a và b phải có 1 số chia hết cho 5

Giả sử b chia hết cho 5 \(\Rightarrow b=5\)

\(\Rightarrow a^2+25=1394\Rightarrow a=37\)

Vậy \(\left(a;b;c\right)=\left(37;5;2\right);\left(37;2;5\right);\left(2;5;37\right);\left(2;37;5\right);\left(5;2;37\right);\left(5;37;2\right)\)

29 tháng 3 2023

đề bài là 1398 mà sao trong lới giải lại có 1398 vậy ạ

9 tháng 1 2016

Giả sử (a1-b1)(a2-b2)....(a7-b7) la số lẻ

=> a1-b1;a2-b2;.....;a7-b7 là số lẻ

=> (a1-b1)+(a2-b2)+....+(a7-b7) là số lẻ

=> (a1+a2+...+a7)-(b1+b2+...+b3) là số lẻ

Mà 

 (a1+a2+...+a7)-(b1+b2+...+b3) =0 vô lí

=> tich do la so chan

 

27 tháng 12 2015

giả sử P lẻ thì a1-b2;a2-b2;a2003-b2003 lẻ.khi đó, (a1-b1)+(a2-b2)+...+(a2003-b2003) lẻ(vì có 2003 cặp số lẻ) (1)

mà (a1-b1)+(a2-b2)+...+(a2003-b2003)=(a1+a2+...+a2003)-(b1+b2+...+b2003). vì b1;b2;b3;...;b2003 là cách sắp xếp theo thứ tự khác của a1;a2;a3;...;a2003 nên (a1+a2+...+a2003)-(b1+b2+...+b2003)=0(2)

do (1) và(2) mâu thuẫn nên P ko thể là số lẻ, vậy P là số chẵn(đpcm)

tick 

13 tháng 9 2017