Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/
\(\Leftrightarrow x^2-2xy+y^2+2x^2+10x+26=0\)
\(\Leftrightarrow\left(x-y\right)^2+2\left(x-\frac{5}{2}\right)^2+\frac{27}{2}=0\)
\(VT>0\Rightarrow\) ko tồn tại x; y thỏa mãn
b/
\(\Leftrightarrow4x^2-4x+1+3\left(y^2+10y+25\right)+2=0\)
\(\Leftrightarrow\left(2x-1\right)^2+3\left(y+5\right)^2+2=0\)
\(\Rightarrow\) Không tồn tại x; y thỏa mãn
c/
\(3\left(x^2-4x+4\right)+6\left(y^2-\frac{10}{3}y+\frac{25}{9}\right)+\frac{34}{3}=0\)
\(\Leftrightarrow3\left(x-2\right)+6\left(y-\frac{5}{3}\right)^2+\frac{34}{3}=0\)
Không tồn tại x; y thỏa mãn
bạn c/m cho nó lớn hơn hoặc nhỏ hơn 0 đi mk ngại làm vì hơi nhìu ^.^ sory
bài này chỉ có hsg như tui, alibaba nguyễn, hoàng lê bảo ngọc ..... làm dc
a: \(x^2+3y^2-4x+6y+7=0\)
\(\Leftrightarrow x^2-4x+4+3y^2+6y+3=0\)
\(\Leftrightarrow\left(x-2\right)^2+3\left(y+1\right)^2=0\)
\(\Leftrightarrow\left(x,y\right)=\left(-2;1\right)\)
\(4x^2+3y^2-4x+30y+78=0\)
=>\(\left(4x^2-4x+1\right)+3\left(y^2+10y+25\right)+2=0\)
=>\(\left(2x-1\right)^2+3\left(y+5\right)^2+2=0\)(vô lý)
=>\(\left(x,y\right)\in\varnothing\)
Làm lần lượt nha!
a) Ta có:
\(A=3x^2+y^2+10x-2xy+26\)
\(=\left(x^2+2xy+y^2\right)+\left(2x^2+10x+\frac{50}{4}\right)+\frac{27}{2}\)
\(=\left(x+y\right)^2+2\left(x^2+2.x.\frac{5}{2}+\frac{25}{4}\right)+\frac{27}{2}\)
\(=\left(x+y\right)^2+2\left(x+\frac{5}{2}\right)^2+\frac{27}{2}\ge\frac{27}{2}>0\) với mọi x nên nó vô nghiệm
\(4x^2+3y^2-4x+30y+78\)
\(=\left(2x\right)^2-2\cdot2x\cdot1+1^2+3y^2+30y+75+2\)
\(=\left(2x-1\right)^2+3\left(y^2+2\cdot y\cdot5+5^2\right)+2\)
\(=\left(2x-1\right)^2+3\left(y+5\right)^2+2\ge2>0\)
=> đẳng thức ko thể bằng 0
=> đpcm
\(4x^2+3y^2-4x+30y+78=0\)
\(=4x^2-4x+1+3y^2+30y+75+2\)
\(=(4x^2-4x+1)+3(y^2+10y+25)+2\)
\(=(2x-1)^2+3(y+5)^2+2>0\)với mọi x
=> không có x,y nào thỏa mãn
P/S : Bài này chứng minh hay sao?
\(3x^2+6y^2-12x-20y+40=0\)
\(\Rightarrow\left(3x^2-12x+12\right)+\left(6y^2-12y+6\right)+22=0\)
\(\Rightarrow3\left(x^2-4x+4\right)+6\left(y^2-2y+1\right)+22=0\)
\(\Rightarrow3\left(x-2\right)^2+6\left(y-1\right)^2+22=0\)
Ta thấy: \(3\left(x-2\right)^2\ge0\forall x\)
\(6\left(y-1\right)^2\ge0\forall y\)
\(\Rightarrow3\left(x-2\right)^2+6\left(y-1\right)^2\ge0\forall x;y\)
\(\Rightarrow3\left(x-2\right)^2+6\left(y-1\right)^2+22>0\forall x;y\)
Mặt khác: \(3\left(x-2\right)^2+6\left(y-1\right)^2+22=0\)
Suy ra: Không có giá trị nào của x; y thoả mãn yêu cầu đề bài.
#Ayumu
a) 4x2+3y2-4x+30y+78
=4x2-4x+1+3y2+30y+75+2
=(4x2-4x+1)+3(y2+10y+25)+2
=(2x-1)2+3(y+5)2+2>0 với mọi x
=>ko có x;y nào thỏa mãn
b)3x2+6y2-12x-20y+40
\(=3\left(x^2-4x+4\right)+6\left(y^2-\frac{10}{3}+\frac{25}{9}\right)+\frac{34}{3}\)
\(=3\left(x-2\right)^2+6\left(y-\frac{5}{3}\right)^2+\frac{34}{3}>0\) với mọi x
=>ko có x;y nào thỏa mãn
con này dễ mà