Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
dễ
a) Đặt ƯCLN ( 2n + 1 ; 4n + 3 ) = d
=> 2n + 1 chia hết cho d
=> 4n + 3 chia hết cho d
=> 2 . ( 2n + 1 ) chia hết cho d
ta có :
4n + 3 - 2 . ( 2n + 1 ) chia hết cho d
=> 4n + 3 - 4n + 2 chia hết cho d
=> 1 chia hết cho d
=> d = 1
do đó ƯCLN ( 2n + 1 ; 4n + 3 ) = 1
vậy 2n + 1 và 4n + 3 là hai số nguyên tố cùng nhau
b) Gọi d là ƯCLN ( 2n + 3 ; 3n + 4 )
=> 2n + 3 chia hết cho d => 3 . ( 2n + 3 ) chia hết cho d ( 1 )
=> 3n + 4 chia hết cho d => 2 . ( 3n + 4 ) chia hết cho d ( 2 )
từ ( 1 ) và ( 2 ) ta có :
3 . ( 2n + 3 ) - 2 . ( 3n + 4 ) chia hết cho d
=> 6n + 9 - 6n + 8 chia hết cho d
=> 1 chia hết cho d
=> d = 1
do đó ƯCLN ( 2n + 3 ; 3n + 4 ) = 1
vậy 2n + 3 và 3n + 4 là hai số nguyên tố cùng nhau
a) Gọi ƯCLN(3n+1,6n+1)=d
=> 3n+1 và 6n+1 chia hết chưa d
=> 2(3n+1) và 6n+1 chia hết chưa d
=>6n+2 và 6n+1 chia hết cho d
=>(6n+2)-(6n+1)=1 chia hết cho d
=>d=1
=> 3n+1 và 6n+1 nguyên tố cùng nhau
b, Gọi ƯCLN(2n+3,3n+4)=d
=>2n+3 và 3n+4 chia hết cho d
=>3(2n+3) và 2(3n+4) chia hết cho d
=>6n+9 và 6n+8 chia hết cho d
=>(6n+9)-(6n+8)=1 chia hết cho d
=>d=1
=>2n+3 và 3n+4 nguyên tố cùng nhau
đ, gọi d là ước nguyên tố chung của 2n + 1 và 6n + 5
ta có : 2n + 1 : hết cho d ; 6n + 5 : hết cho d
=> 3( 2n + 1) : hết cho d : 6n + 5 : hết cho d
=> ( 6n + 5) - 3( 2n + 1) : hết cho d
=> 2 : hết cho d
=> d = 2
mà 2n + 1 ko : hết cho d
=> d = 1( dpcm)
a) Goi d la UCLN ( n ; n+1 ) b) Goi d la UCLN ( 3n+2 ;5n+3)
n+1 chia het cho d 3n+2 chia het cho d-->5(3n+2) chia het cho d
n chia het cho d 5n+3 chia het cho d-->3(5n+3) chia het cho d
-> n+1-n chia het cho d ->5(3n+2)-3(5n+3) chia het cho d
-> 1 chia het cho d -> 15n+10-15n-9 chia het cho d
Va n va n+1 la hai so ngto cung nhau - -> 1 chia het cho d
Vay 3n+2 va 5n+3 chia het cho d
c) Goi d la UCLN (2n+1;2n+3) d) Goi d la UCLN (2n+1;6n+5)
2n+1 chia het cho d 2n+1 chia het cho d-->3(2n+1) chiA het cho d
2n+3 chia het cho d--> 2n+1+2 chia het cho d 6n+5 chia het cho d
->2 chia het cho d ->6n+5-3(2n+1) chia het cho d
--> d \(\in\)U (2)-> d\(\in\) {1;2} -> 6n+5-6n-3 chia het cho d
d=2 loai vi 2n+1 khong chia het cho 2-> d=1 ->2 chia het cho d
Vay 2n+1 va 2n+3 la hai so ng to cung nhau --> d \(\in\)U (2)-> d\(\in\) {1;2}
d=2 loai vi 5n+3 k chia het cho 2-->d=1
vay 2n+1 va 6n+5 la2 so ng to cung nhAU
a)Vì hai số tự nhiên liên tiếp có UC là 1 nên =>Hai số tự nhiên lien tiếp khác 0 là hai số nguyên tố cùng nhau
b)Vì hai số tự nhiên liên tiếp có UC là 1 nên =>Hai số tự nhiên lien tiếp là hai số nguyên tố cùng nhau
tick nha
Gọi x là ƯC của 2.n+5 va 3.n +7
2.n+5 chia hết cho x=> 3{2n+5} chia hết cho x
3n+7 chia hết cho x => 2{3n+7} chia hết cho x
3{2n+5} - 2{3n+7chia hết cho x
6n+15 - 6n+14 chia hết cho x
=>1 chia hết cho x
Gọi ƯC(2n+5,3n+7)=d
Ta có: 2n+5 chia hết cho d=>3.(2n+5)=6n+15 chia hết cho d
3n+7 chia hết cho d=>2.(3n+7)=6n+14 chia hết cho d
=>6n+15-(6n+14) chia hết cho d
=>1 chia hết cho d
=>d=1
=>ƯC(2n+5,3n+7)=1
=>2n+5 và 3n+7 là 2 số nguyên tố cùng nhau
Ta có : k là ƯCLN của 7n + 10 và 5n + 7
Vậy : 7n + 10 chia hết cho k ; 5n + 7 chia hết cho k
Hay 5(7n + 10 ) và 7(5n + 7 )
35n + 50 và 35n + 49 chia hết cho k
=> ĐPCM
Hai bài kia bạn làm tương tư nhé , chúc may mắn
a) Gọi d = ƯCLN(2n+5; 3n+7) (d thuộc N*)
=> 2n + 5 chia hết cho d; 3n + 7 chia hết cho d
=> 3.(2n + 5) chia hết cho d; 2.(3n + 7) chia hết cho d
=> 6n + 15 chia hết cho d; 6n + 14 chia hết cho d
=> (6n + 15) - (6n + 14) chia hết cho d
=> 6n + 15 - 6n - 14 chia hết cho d
=> 1 chia hết cho d
Mà d thuộc N* => d = 1
=> ƯCLN(2n+5; 3n+7) = 1
=> 2n + 5 và 3n + 7 là 2 số nguyên tố cùng nhau (đpcm)
câu b tương tự
a) Gọi ƯC(3n + 4; 2n + 3) = d
=> 3n + 4 ⋮ d => 2(3n + 4) ⋮ d hay 6n + 8 ⋮ d (1)
=> 2n + 3 ⋮ d => 3(2n + 3) ⋮ d hay 6n + 9 ⋮ d (2)
Từ (1) và (2) => 6n + 9 - 6n - 8 ⋮ d
hay 1 ⋮ d => d ∈ Ư(1) = 1
=> d = 1 hay ƯC(3n + 4; 2n + 3) = 1
Vậy 3n + 4 và 2n + 3 là 2 số nguyên tố cùng nhau
b) làm tương tự ( nhân 2 vào vế n + 5 )
a) Đặt (3n + 4, 2n + 3) = d
\(\Rightarrow\hept{\begin{cases}3n+4⋮d\Rightarrow2\left(3n+4\right)⋮d\Rightarrow6n+8⋮d\\2n+3⋮d\Rightarrow3\left(2n+3\right)⋮d\Rightarrow6n+9⋮d\end{cases}}\Rightarrow\left(6n+9\right)-\left(6n+8\right)⋮d\Rightarrow1⋮d\Rightarrow d=1\)
Vậy...