K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 12 2017

 Đây này:

Chứng minh tồn tại số vô tỉ,tập hợp số vô tỉ là vô hạn,giữa 2 số hữu tỉ khác nhau luôn tồn tại một số hữu tỉ khác,Toán học Lớp 10,bài tập Toán học Lớp 10,giải bài tập Toán học Lớp 10,Toán học,Lớp 10

15 tháng 11 2016

ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa

aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa

aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa

aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaafffffffffffffffffffffffffffffffffff

fffffffffffffffffffffffffffffff

faaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa

16 tháng 11 2016

kkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhoooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooossssssssssssssssssssssssssssssssssssssss

17 tháng 9 2020

Giả sử \(\frac{a}{b}< \frac{c}{d}\)

Bạn đi chứng minh \(\frac{a}{b}< \frac{a+c}{b+d}< \frac{c}{d}\)

Cái này khá dễ, bạn có thể nhân chéo, mình không chứng minh lại.

Tiếp tục dùng : \(\frac{a}{b}< \frac{2a+c}{2b+d}< \frac{a+c}{b+d}\)

 Ví dụ vậy, tiếp tục dùng thì ta sẽ tìm được vô số phân số (số hữu tỉ) nằm giữa hai số đề bài cho.

‐ Ta có trên trục số \(2\) điểm \(A\) và \(B\) lần lượt là :\(\frac{a}{b},\frac{c}{d}\) 

mà trên trục số\(\frac{a}{b}\) nằm bên trái\(\frac{c}{d}\)

\(\Rightarrow\frac{a}{b}< \frac{c}{d}\)
‐ Như ta đã biết : Nếu\(\frac{a}{b}< \frac{c}{d}\)

\(\Rightarrow\frac{a}{b}< \frac{a+c}{b+d}< \frac{c}{d}\)

Mà kí hiệu\(\frac{a+c}{b+d}\) là \(C\)

Vậy ta luôn có \(C\) nằm giữa \(A,B\)

\(\Rightarrow\) Trên trục số,giữa \(2\) điểm biểu diễn \(2\) số hữu tỉ \(\frac{a}{b}\) và\(\frac{c}{d}\)
luôn tồn tại \(1\) điểm biểu diễn số hữu tỉ khác \(\left(DPCM\right)\)

NHỚ TK MK NHA

CÁCH 2 NÈ

+) Nếu\(\frac{a}{b}>\frac{c}{d}\)

\(\Rightarrow2.\frac{a}{b}>\frac{a}{b}+\frac{c}{d}>2.\frac{c}{d}\)

\(\Rightarrow\frac{a}{b}>\frac{\frac{a}{b}+\frac{c}{d}}{2}>\frac{c}{d}\)

\(\Rightarrow\frac{\frac{a}{b}+\frac{c}{d}}{2}\)là một điểm hữu tỉ nằm giữa 2 điểm \(\frac{a}{b}\) và\(\frac{c}{d}\)trên trục số\(\left(1\right)\)

Tương tự:

+)Nếu\(\frac{a}{b}< \frac{c}{d}\)thì\(\frac{a}{b}< \frac{\frac{a}{b}+\frac{c}{d}}{2}< \frac{c}{d}\)

\(\Rightarrow\frac{\frac{a}{b}+\frac{c}{d}}{2}\)là một điểm hữu tỉ nằm giữa 2 điểm\(\frac{a}{b}\) và\(\frac{c}{d}\)trên trục số\(\left(2\right)\)

Từ\(\left(1\right)\)\(\left(2\right)\)\(\Rightarrow\)trên trục số giữa hai điểm hữu tỉ tùy ý a/b và c/d ( a,b,c, d thuộc z ;b,d khác 0)luôn tồn tại một điểm hữu tỉ khác.

NHỚ TK MK NHA

27 tháng 1 2016

bạn cho mink cách giai dc ko

 

29 tháng 1 2016

Em rất muốn giúp nhưng em mới học lớp  6 à

21 tháng 6 2017

- Ta có trên trục số 2 điểm A và B lần lượt là : \(\frac{a}{b},\frac{c}{d}\)
mà trên trục số \(\frac{a}{b}\)nằm bên trái \(\frac{c}{d}\)=) \(\frac{a}{b}< \frac{d}{c}\)
- Như ta đã biết : Nếu \(\frac{a}{b}< \frac{c}{d}\)=) \(\frac{a}{b}< \frac{a+c}{b+d}< \frac{c}{d}\)
- Mà kí hiệu \(\frac{a+c}{b+d}\)là C
Vậy ta luôn có \(C\)nằm giữa \(A,B\)=) Trên trục số,giữa 2 điểm biểu diễn 2 số hữu tỉ \(\frac{a}{b}\)và \(\frac{c}{d}\)luôn tồn tại 1 điểm biểu diễn số hữu tỉ khác ( ĐPCM )

15 tháng 4 2020

có ai trả lời hộ mình câu hỏi này ở trong trang cá nhân của mình ko