Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{1}{a}+\frac{1}{b}=\frac{1}{a+b+c}-\frac{1}{c}\)
\(\Leftrightarrow\frac{a+b}{ab}=\frac{a+b}{-\left(a+b+c\right).c}\)
TH1:a+b=0
=> a=-b
\(\frac{1}{a^n}+\frac{1}{b^n}+\frac{1}{c^n}=\frac{1}{\left(-b\right)^n}+\frac{1}{b^n}+\frac{1}{c^n}=\frac{1}{c^n}\)(vì n lẻ nên (-b)n âm)
\(\frac{1}{a^n+b^n+c^n}=\frac{1}{\left(-b\right)^n+b^n+c^n}=\frac{1}{c^n}\)
TH2: ab=-(a+b+c)
=> ab=-ac-bc-c2 => ab+ac=-bc-c2=> a.(b+c)=-b.(b+c)
\(\Rightarrow\orbr{\begin{cases}a=-b\\b=-c\end{cases}}\)c/m tương tự trường hợp 1 :))
Ta có: \(\left(a+\frac{1}{a}\right)\left(b+\frac{1}{b}\right)\left(c+\frac{1}{c}\right)\)
\(=\left(ab+\frac{1}{ab}+\frac{a}{b}+\frac{b}{a}\right)\left(c+\frac{1}{c}\right)\)
\(=\left[ab+\frac{1}{16ab}+\frac{15}{16ab}+\left(\frac{a}{b}+\frac{b}{a}\right)\right]\left(c+\frac{1}{c}\right)\)
\(\ge\left[2\sqrt{ab.\frac{1}{16ab}}+\frac{15}{4\left(a+b\right)^2}+2\sqrt{\frac{a}{b}.\frac{b}{a}}\right]\left(2\sqrt{c.\frac{1}{c}}\right)\)
\(\ge\frac{25}{2}\left(Đpcm\right)\)
Dấu " = " xảy ra \(\Leftrightarrow a=b=\frac{1}{2};c=1\)
Ko phải số thực dương thì hơi mất thời gian
Ta có: \(\left|x\right|+\left|y\right|\ge x+y\Rightarrow\left|x\right|+\left|y\right|+\left|z\right|\ge x+y+z\)
\(\Rightarrow\frac{bc}{a^2+1}+\frac{ca}{b^2+1}+\frac{ab}{c^2+1}\le\frac{\left|bc\right|}{a^2+1}+\frac{\left|ca\right|}{b^2+1}+\frac{\left|ab\right|}{c^2+1}\)
Đặt \(\left(\left|a\right|;\left|b\right|;\left|c\right|\right)=\left(x;y;z\right)\Rightarrow x;y;z\ge0\)
\(\Rightarrow VT\le\frac{yz}{x^2+1}+\frac{zx}{y^2+1}+\frac{xy}{z^2+1}=\frac{yz}{x^2+y^2+x^2+z^2}+\frac{zx}{x^2+y^2+y^2+z^2}+\frac{xy}{x^2+z^2+y^2+z^2}\)
\(VT\le\frac{yz}{2\sqrt{\left(x^2+y^2\right)\left(x^2+z^2\right)}}+\frac{zx}{2\sqrt{\left(x^2+y^2\right)\left(y^2+z^2\right)}}+\frac{xy}{2\sqrt{\left(x^2+z^2\right)\left(y^2+z^2\right)}}\)
\(VT\le\frac{1}{4}\left(\frac{y^2}{x^2+y^2}+\frac{z^2}{x^2+z^2}+\frac{x^2}{x^2+y^2}+\frac{z^2}{y^2+z^2}+\frac{x^2}{x^2+z^2}+\frac{y^2}{y^2+z^2}\right)=\frac{3}{4}\)
Dấu "=" xảy ra khi \(x=y=z=\frac{1}{\sqrt{3}}\) hay \(a=b=c=\pm\frac{1}{\sqrt{3}}\)
có \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{a+b+c}\)
\(\Leftrightarrow\frac{ab+bc+ca}{abc}=\frac{1}{a+b+c}\)
\(\Leftrightarrow\left(a+b+c\right)\left(ab+bc+ca\right)=abc\)
\(\Leftrightarrow a^2b+ab^2+b^2c+bc^2+ca^2+a^2c+3abc-abc=0\)
\(\Leftrightarrow ab\left(a+b\right)+c\left(a+b\right)^2+c^2\left(a+b\right)=0\)
\(\Leftrightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)=0\)
\(\Leftrightarrow\hept{\begin{cases}a=-b\\b=-c\\c=-a\end{cases}}\)thay bằng dấu ngoặc vuông nha bạn
TH1: a=-b ; vì n là số lẻ nên a^n = -b^n
\(\Rightarrow\frac{1}{-b^n}+\frac{1}{b^n}+\frac{1}{c^n}=\frac{1}{-b^n+b^n+c^n}\)
\(\Rightarrow\frac{1}{c^n}=\frac{1}{c^n}\)( luôn đúng )
TH2, Th3: làm tương tự
=> kết luận đề bài
chúc bạn học tốt ^_^
Ta có \(\frac{1}{a}+\frac{1}{b}=\frac{1}{a+b+c}-\frac{1}{c}\)
\(\Leftrightarrow\) \(\frac{a+b}{ab}=\frac{-\left(a+b\right)}{c\left(a+b+c\right)}\)
\(\Leftrightarrow\) \(c\left(a+b\right)\left(a+b+c\right)+ab\left(a+b\right)=0\)
\(\Leftrightarrow\) \(\left(a+b\right)\left(b+c\right)\left(c+a\right)=0\)
\(\Leftrightarrow\) a = -b hoặc b = -c hoặc c = -a
1) Nếu a = -b thì \(a^{2n+1}+b^{2n+1}=-b^{2n+1}+b^{2n+1}=0\)và \(\frac{1}{a^{2n+1}}+\frac{1}{b^{2n+1}}=\frac{1}{-b^{2n+1}}+\frac{1}{b^{2n+1}}=0\)
\(\Rightarrow\) \(\frac{1}{a^{2n+1}}+\frac{1}{b^{2n+1}}+\frac{1}{c^{2n+1}}=\frac{1}{c^{2n+1}}=\frac{1}{a^{2n+1}+b^{2n+1}+c^{2n+1}}\)
Tương tự cho 2 trường hợp còn lại suy ra đpcm.
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{n}=\frac{1}{a+b+c}\)
\(\Leftrightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}-\frac{1}{a+b+c}=0\)
\(\Leftrightarrow\frac{a+b}{ab}+\frac{a+b+c-c}{c\left(a+b+c\right)}=0\)
\(\Leftrightarrow\left(a+b\right)\left(\frac{1}{ab}+\frac{1}{ac+bc+c^2}\right)=0\)
\(\Leftrightarrow\left(a+b\right)\left(ab+ac+bc+c^2\right)=0\)
\(\Leftrightarrow\left(a+b\right)\left(a+c\right)\left(b+c\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}a+b=0\Rightarrow c=n-a-b=n\\b+c=0\Rightarrow a=n\\a+c=0\Rightarrow b=n\end{matrix}\right.\)