\(\frac{a}{b}+\frac{b}{a}\ge2\)  với mọi \(x,y\ge1\)

<...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 1 2017

cô-si trực tiếp : a/b+b/a >= 2 căn (a/b.b/a)=2 (đpcm)

Dấu "=" xảy ra <=> a=b

13 tháng 1 2017

xem lại đề

24 tháng 4 2019

Ta có: \(\frac{1+ab}{1+a^2}+\frac{1+ab}{1+b^2}=\left(1+ab\right)\left(\frac{1}{1+a^2}+\frac{1}{1+b^2}\right)\)

mà \(\frac{1}{1+a^2}+\frac{1}{1+b^2}\ge\frac{4}{2+a^2+b^2}\)( Áp dụng BĐT phụ \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\))

Mặt khác: \(a^2+b^2\ge2ab\)

=> \(\frac{1}{1+a^2}+\frac{1}{1+b^2}\ge\frac{4}{2+2ab}=\frac{2}{1+ab}\)

=> \(\left(1+ab\right)\left(\frac{1}{1+a^2}+\frac{1}{1+b^2}\right)\ge\left(1+ab\right)\left(\frac{2}{1+ab}\right)=2\)(đpcm)

28 tháng 9 2016

Theo bài ra ta có: 

         \(\frac{bz-cy}{a}\)=\(\frac{cx-az}{b}\)=\(\frac{ay-bx}{c}\)và a,b,c khác o

\(\Rightarrow\)\(\frac{a.\left(bz-cy\right)}{a^2}\)=\(\frac{b.\left(cx-az\right)}{b^2}\)=\(\frac{c.\left(ay-bx\right)}{c^2}\)

\(\Rightarrow\)\(\frac{abz-acy}{a^2}\)=\(\frac{bcx-abz}{b^2}\)=\(\frac{acy-bcx}{c^2}\)

Ap dụng tính chất dãy tỉ số bằng nhau ta có:

   \(\frac{bz-cy}{a}\)=\(\frac{cx-az}{b}\)=\(\frac{ay-bx}{c}\)=\(\frac{abz-acy-bcx-abz-acy-bcx}{a^2-b^2-c^2}\)= 0

Suy ra:

\(\hept{\begin{cases}bz-cy=0\\cx-az=0\\ay-bx=0\end{cases}}\)\(\Rightarrow\)\(\hept{\begin{cases}bz=cy\\cx=az\\ay=bx\end{cases}\Rightarrow}\)\(\hept{\begin{cases}\frac{b}{y}=\frac{c}{z}\\\frac{c}{z}=\frac{a}{x}\\\frac{a}{x}=\frac{b}{y}\end{cases}}\)\(\Rightarrow\)\(\frac{a}{x}=\frac{b}{y}=\frac{c}{z}\)

Vậy \(\frac{a}{x}=\frac{b}{y}=\frac{c}{z}\)(đpcm)

1 tháng 6 2018

vì bài dài quá nên mình làm từng bài 1 nhé

1. Ta thấy : \(\frac{1}{n^3}< \frac{1}{n^3-n}=\frac{1}{\left(n-1\right)n\left(n+1\right)}=\frac{1}{2}.\frac{\left(n+1\right)-\left(n-1\right)}{\left(n-1\right)n\left(n+1\right)}=\frac{1}{2}.\left[\frac{1}{\left(n-1\right)n}-\frac{1}{n\left(n+1\right)}\right]\)

Do đó : 

\(B< \frac{1}{2}.\left[\frac{1}{2.3}-\frac{1}{3.4}+\frac{1}{3.4}-\frac{1}{4.5}+...+\frac{1}{\left(n-1\right)n}-\frac{1}{n\left(n+1\right)}\right]< \frac{1}{2}.\frac{1}{6}=\frac{1}{12}\)

1 tháng 6 2018

2.

Nhận xét : \(1+\frac{1}{n\left(n+2\right)}=\frac{\left(n+1\right)^2}{n\left(n+2\right)}\)

Do đó : 

\(A=\frac{2^2}{1.3}.\frac{3^2}{2.4}.\frac{4^2}{3.5}...\frac{\left(n+1\right)^2}{n\left(n+2\right)}=\frac{2.3...\left(n+1\right)}{1.2...n}.\frac{2.3...\left(n+1\right)}{3.4...\left(n+2\right)}=\frac{n+1}{1}.\frac{2}{n+2}< 2\)

28 tháng 3 2017

Câu b) x/y + y/x >hoặc = 2

<=> x/y + y/x - 2 > hoặc = 0

<=> x^2 + y^2 -2xy /xy >hoặc =0

<=> (x-y)^2 /xy > hoặc = 0

(x-y)^2 > hoặc = 0 với mọi x;y .Dấu"=" xảy ra khi x=y

vì x;y cùng dấu =>xy>0

=>(x-y)^2 / xy > hoặc = 0 luôn luôn đúng.

Mà các Phép biến đổi trên là tương đương

=>x/y + y/x >hoặc =2 với mọi x;y cùng dấu. Dấu "=" xảy ra khi x=y. Nhớ nhé

28 tháng 3 2017

Câu g) a^2 + b^2 > hoặc =1/2 với a+b=1

vì a+b=1 =>(a+b)^2 = 1 =>(1*a+1*b)^2 =1

Áp dụng bất đẳng thức Bunhiacốpski cho 4 số 1;1;a;b ta có

(1*a+1*b)^2 < hoặc = (1^2 + 1^2 )(a^2 + b^2).Dấu "=" xảy ra khi 1^2 / a^2 = 1^2 /b^2 =>1/a = 1/b=>a=b=1/2

Hay 1< hoặc = 2(a^2 +b^2) .Dấu "=" xảy ra khi a=b=1/2

=>a^2 + b^2 > hoặc = 1/2.Dấu "=" xảy ra khi a=b=1/2 =>đpcm

11 tháng 8 2017

Đặt \(A=\frac{xy\sqrt{z-1}+xz\sqrt{y-2}+yz\sqrt{x-3}}{xyz}\)

\(\Rightarrow A=\frac{\sqrt{z-1}}{z}+\frac{\sqrt{y-2}}{y}+\frac{\sqrt{x-3}}{x}\)

\(\Rightarrow A=\frac{2.\sqrt{z-1}}{2z}+\frac{2.\sqrt{2}.\sqrt{y-2}}{2.\sqrt{2}.y}+\frac{2.\sqrt{3}.\sqrt{x-3}}{2.\sqrt{3}.x}\)\

\(\Rightarrow A\le\frac{z-1+1}{2z}+\frac{y-2+2}{2\sqrt{2}.y}+\frac{z-3+3}{2\sqrt{3}.x}\) ( ÁP DỤNG BĐT CÔ-SI )

\(\Rightarrow A\le\frac{z}{2z}+\frac{y}{2\sqrt{2}.y}+\frac{z}{2\sqrt{3}.z}\)

\(\Rightarrow A\le\frac{1}{2}+\frac{1}{2\sqrt{2}}+\frac{1}{2\sqrt{3}}=\frac{1}{2}+\frac{\sqrt{2}}{4}+\frac{\sqrt{3}}{6}\)

7 tháng 4 2019

a) Áp dụng đbt Cauchy cho 2 số không âm ta có :

\(x+\frac{4}{x}\ge2\sqrt{x\cdot\frac{4}{x}}=2\cdot\sqrt{4}=2\cdot2=4\)

Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}x=\frac{4}{x}\\x=2\end{cases}\Leftrightarrow x=2}\)

còn câu b bạn

NV
4 tháng 6 2020

\(a^4+b^4\ge\frac{1}{2}\left(a^2+b^2\right)^2\ge\frac{1}{2}\left(\frac{1}{2}\left(a+b\right)^2\right)^2=\frac{1}{8}\left(a+b\right)^4\ge\frac{1}{8}\)

Dấu "=" xảy ra khi \(a=b=\frac{1}{2}\)