K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 9 2016

Ta có: \(\frac{a+b}{a-b}=\frac{c+a}{c-a}\)

=> \(\left(a+b\right).\left(c-a\right)=\left(a-b\right).\left(c+a\right)\)

=> \(bc-a^2-ab=a^2-bc-ab\)

=> \(2a^2=2bc\)

Triệt tiêu => \(a^2=bc\left(đpcm\right)\)

Vậy a2 = bc

CHÚC BẠN HỌC TỐT

1 tháng 9 2016

nhân chéo lên nha bạn rút gọn ac ta đc  bc-a ^ 2 - ab= a ^ 2-bc-ab <=>2a ^ 2= 2bc <=> a ^ 2= bc=>ďpcm

2 tháng 8 2017

a) a2 = bc

\(\Rightarrow\frac{a}{c}=\frac{b}{a}\)

\(\Rightarrow\frac{a}{c}=\frac{b}{a}=\frac{a+b}{c+a}=\frac{a-b}{c-a}\)

\(\Rightarrow\frac{a+b}{a-b}=\frac{c+a}{c-a}\)

b) a2 = bc

\(\Rightarrow\frac{a}{b}=\frac{c}{a}\)

\(\Rightarrow\frac{a^2}{b^2}=\frac{c^2}{a^2}=\frac{a}{b}.\frac{c}{a}=\frac{c}{b}\)

\(\Rightarrow\frac{a^2+c^2}{b^2+a^2}=\frac{c}{b}\)

21 tháng 9 2016

\(\frac{a+b}{a-b}=\frac{c+a}{c-a}\Rightarrow\frac{a+b}{c+a}=\frac{a-b}{c-a}=\frac{\left(a+b\right)-\left(a-b\right)}{\left(c+a\right)-\left(c-a\right)}=\frac{2b}{2a}=\frac{b}{a}\)

\(\Rightarrow\frac{a+b}{c+a}=\frac{b}{a}=\frac{a+b-b}{c+a-a}=\frac{a}{c}\Rightarrow\frac{b}{a}=\frac{a}{c}\Rightarrow a^2=bc\)

24 tháng 3 2017

\(\frac{ab}{a+b}=\frac{ac}{a+c}=\frac{bc}{b+c}\Rightarrow\frac{abc}{c\left(a+b\right)}=\frac{abc}{b\left(a+c\right)}=\frac{abc}{a\left(b+c\right)}\)

\(\Rightarrow c\left(a+b\right)=b\left(a+c\right)\Leftrightarrow ac+bc=ab+bc\Rightarrow ac=ab\Rightarrow c=b\) (1)

\(\Rightarrow b\left(a+c\right)=a\left(b+c\right)\Leftrightarrow ab+bc=ab+ac\Rightarrow bc=ac\Rightarrow b=a\) (2)

\(\Rightarrow c\left(a+b\right)=a\left(b+c\right)\Leftrightarrow ac+bc=ab+ac\Rightarrow bc=ab\Rightarrow c=a\) (3)

Từ (1) ; (2) ; (3) => \(a=b=c\) (ĐPCM)

4 tháng 4 2018

Ta có : 

\(\frac{a+b}{a-b}=\frac{c+a}{c-a}\)\(\Leftrightarrow\)\(\frac{a+b}{c+a}=\frac{a-b}{c-a}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có : 

\(\frac{a+b}{c+a}=\frac{a-b}{c-a}=\frac{a+b+a-b}{c+a+c-a}=\frac{a+a}{c+c}=\frac{2a}{2c}=\frac{a}{c}\) \(\left(1\right)\)

Áp dụng tính chất dãy tỉ số bằng nhau ta lại có : 

\(\frac{a+b}{c+a}=\frac{a-b}{c-a}=\frac{a+b-a+b}{c+a-c+a}=\frac{b+b}{a+a}=\frac{2b}{2a}=\frac{b}{a}\) \(\left(2\right)\)

Từ (1) và (2) suy ra : 

\(\frac{a}{c}=\frac{b}{a}\)\(\Rightarrow\)\(a.a=b.c\)\(\Rightarrow\)\(a^2=bc\)

Vậy từ \(\frac{a+b}{a-b}=\frac{c+a}{c-a}\) suy ra \(a^2=bc\)

Chúc bạn học tốt ~ 

4 tháng 4 2018

Có a+b/a-b = c+a/c-a

hay: (a+b) (c -a) = ( c + a)(a - b)

        ac - a^2 + bc - ab = ac - bc + a^2 - ab

<=>             2bc            =          2a^2

  =>               bc            =           a^2

8 tháng 12 2021

Có \(\dfrac{a}{b}=\dfrac{c}{d}=>ad=bc\) => a2 = ad => a=d

Xét \(\dfrac{a+b}{a-b}=\dfrac{c+a}{c-a}\)

<=> (a+b)(c-a) = (a-b)(c+a)

<=> (a+b)(c-d) = (a-b)(c+d)

<=> ac - ad + bc - bd = ac + ad -bc -bd

<=> 2bc = 2ad (luôn đúng) => đpcm

Ta có:\(a^2=b.c\)

\(\Rightarrow\frac{a^2+c^2}{a^2+b^2}=\frac{b.c+c^2}{b.c+b^2}=\frac{c\left(b+c\right)}{b\left(b+c\right)}=\frac{c}{b}=\frac{c^2}{b^2}\)

\(\Leftrightarrow\frac{a^2+c^2}{a^2+b^2}=\frac{c^2}{b^2}\left(đpcm\right)\)

#Hok_tốt

★๖ۣۜßảo๖ۣۜPɦα♏๖ۣۜ[EηgĻïšħ☯€lub]★ 

\(\frac{c}{b}=\frac{c^2}{b^2}\)??!