\(\frac{a^3}{b+c}+\frac{b^3}{c+a}+\frac{c^3}{a+b}>=\frac{1}{2}\) với a,b,c >0 v...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 7 2019

Có BĐT: \(a^2+b^2+c^2\ge ab+bc+ca\)

\(A=\frac{a^3}{b+c}+\frac{b^3}{c+a}+\frac{c^3}{a+b}=\frac{a^4}{ab+ac}+\frac{b^4}{bc+ab}+\frac{c^4}{ac+bc}\)

Áp dụng BĐT Cauchy-Schwarz dạng Engel:

\(A\ge\frac{\left(a^2+b^2+c^2\right)^2}{2\left(ab+bc+ca\right)}\ge\frac{1^2}{2\left(a^2+b^2+c^2\right)}=\frac{1}{2.1}=\frac{1}{2}\)

\("="\Leftrightarrow a=b=c=\frac{1}{\sqrt{3}}\)

5 tháng 1 2017

Câu 2)

Ta có \(\frac{1}{a+1}+\frac{1}{b+1}\ge\frac{4}{3}\)

\(\Rightarrow\frac{b+1+a+1}{\left(a+1\right)\left(b+1\right)}\ge\frac{4}{3}\)

Ta có \(a+b=1\)

\(\Rightarrow\frac{3}{\left(a+1\right)\left(b+1\right)}\ge\frac{4}{3}\)

\(\Rightarrow\frac{3}{\left(a+1\right)b+a+1}\ge\frac{4}{3}\)

\(\Rightarrow\frac{3}{ab+b+a+1}\ge\frac{4}{3}\)

Ta có \(a+b=1\)

\(\Rightarrow\frac{3}{ab+2}\ge\frac{4}{3}\)

\(\Leftrightarrow9\ge4\left(ab+2\right)\)

\(\Rightarrow9\ge4ab+8\)

\(\Rightarrow1\ge4ab\)

Do \(a+b=1\Rightarrow\left(a+b\right)^2=1\)

\(\Rightarrow\left(a+b\right)^2\ge4ab\)

\(\Rightarrow a^2+2ab+b^2\ge4ab\)

\(\Rightarrow a^2-2ab+b^2\ge0\)

\(\Rightarrow\left(a-b\right)^2\ge0\) (đpcm )

5 tháng 1 2017

Câu 3)

Ta có \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge9\)

\(a+b+c=1\)

\(\Rightarrow\frac{a+b+c}{a}+\frac{a+b+c}{b}+\frac{a+b+c}{c}\ge9\)

\(\Rightarrow a+b+c\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge9\)

Áp dụng bất đẳng thức Cô-si

\(\Rightarrow\left\{\begin{matrix}a+b+c\ge3\sqrt[3]{abc}\\\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge3\sqrt[3]{\frac{1}{abc}}\end{matrix}\right.\)

\(\Rightarrow\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge9\sqrt[3]{abc}\sqrt[3]{\frac{1}{abc}}\)

\(\Rightarrow\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge9.\sqrt[3]{\frac{abc}{abc}}\)

\(\Rightarrow\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge9\) (điều này luôn luôn đúng)

\(\Rightarrow\) ĐPCM

22 tháng 8 2020

Trước hết ta chứng minh bất đẳng thức sau \(\sqrt{a^2+x^2}+\sqrt{b^2+y^2}\ge\sqrt{\left(a+b\right)^2+\left(x+y\right)^2}\)

Thật vậy, bất đẳng thức trên tương đương với \(\left(\sqrt{a^2+b^2}+\sqrt{x^2+y^2}\right)^2\ge\left(a+x\right)^2+\left(b+y\right)^2\)\(\Leftrightarrow2\sqrt{\left(a^2+b^2\right)\left(x^2+y^2\right)}\ge2ax+2by\Leftrightarrow\left(a^2+b^2\right)\left(x^2+y^2\right)\ge\left(ax+by\right)^2\)

Bất đẳng thức cuối cùng là bất đẳng thức Bunyakovsky nên (*) đúng

Áp dụng bất đẳng thức trên ta có \(\sqrt{a^2+\frac{1}{b^2}}+\sqrt{b^2+\frac{1}{c^2}}+\sqrt{c^2+\frac{1}{a^2}}\ge\sqrt{\left(a+b\right)^2+\left(\frac{1}{b}+\frac{1}{c}\right)^2}+\sqrt{c^2+\frac{1}{a^2}}\)\(\ge\sqrt{\left(a+b+c\right)^2+\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2}\)

Ta cần chứng minh  \(\left(a+b+c\right)^2+\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2\ge\frac{153}{4}\)

Thật vậy, áp dụng bất đẳng thức Cauchy và chú ý giả thiết \(a+b+c\le\frac{3}{2}\), ta được:\(\left(a+b+c\right)^2+\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2\ge\left(a+b+c\right)^2+\frac{81}{\left(a+b+c\right)^2}\)\(=\left(a+b+c\right)^2+\frac{81}{16\left(a+b+c\right)^2}+\frac{1215}{16\left(a+b+c\right)^2}\)\(\ge2\sqrt{\left(a+b+c\right)^2.\frac{81}{16\left(a+b+c\right)^2}}+\frac{1215}{16.\frac{9}{4}}=\frac{153}{4}\)

Bất đẳng thức đã được chứng minh

Đẳng thức xảy ra khi \(a=b=c=\frac{1}{2}\)

10 tháng 8 2020

\(\frac{1}{2-a}+\frac{1}{2-b}+\frac{1}{2-c}\ge3\)

\(\Leftrightarrow\frac{\left(2-b\right)\left(2-c\right)+\left(2-c\right)\left(2-a\right)+\left(2-a\right)\left(2-b\right)}{\left(2-a\right)\left(2-b\right)\left(2-c\right)}\ge3\)\(\Leftrightarrow\frac{4-2b-2c+bc+4-2c-2a+ca+4-2a-2b+ab}{\left(4-2a-2b+ab\right)\left(2-c\right)}\ge3\)\(\Leftrightarrow\frac{12-4\left(a+b+c\right)+\left(ab+bc+ca\right)}{8-4\left(a+b+c\right)+2\left(ab+bc+ca\right)-abc}\ge3\)

\(\Leftrightarrow12-4\left(a+b+c\right)+\left(ab+bc+ca\right)\ge\)     \(24-12\left(a+b+c\right)+6\left(ab+bc+ca\right)-3abc\)

\(\Leftrightarrow8\left(a+b+c\right)+3abc\ge12+5\left(ab+bc+ca\right)\)

Đặt \(a+b+c=p;ab+bc+ca=q;abc=r\)thì giả thiết trở thành \(p^2-2q=3\)hay \(4q-p^2=2q-3\)

và ta cần chứng minh \(8p+3r\ge12+5q\)

Theo Schur, ta có: \(r\ge\frac{p\left(4q-p^2\right)}{9}\)hay \(3r\ge\frac{p\left(4q-p^2\right)}{3}=\frac{p\left(2q-3\right)}{3}\)(*)

Có \(p^2-2q=3\Rightarrow q=\frac{p^2-3}{2}\)(**)

Sử dụng hai điều kiện (*) và (**) ta đưa điều phải chứng minh về dạng \(8p+\frac{p\left(p^2-6\right)}{3}\ge12+\frac{5\left(p^2-3\right)}{2}\)

\(\Leftrightarrow\left(2p-3\right)\left(p-3\right)^2\ge0\)*đúng*

Đẳng thức xảy ra khi a = b = c = 1

27 tháng 2 2020

3. a) \(A=x+\frac{1}{x-1}=x-1+\frac{1}{x-1}+1\ge2\sqrt{\left(x-1\right)\cdot\frac{1}{x-1}}+1=3\)

Dấu "=" \(\Leftrightarrow x-1=\frac{1}{x-1}\Leftrightarrow x=2\)

Min \(A=3\Leftrightarrow x=2\)

b) \(B=\frac{4}{x}+\frac{1}{4y}=\frac{4}{x}+4x+\frac{1}{4y}+4y\cdot-4\left(x+y\right)\)

\(\ge2\sqrt{\frac{4}{x}\cdot4x}+2\sqrt{\frac{1}{4y}\cdot4y}-4\cdot\frac{5}{4}=5\)

Dấu "=" \(\Leftrightarrow\left\{{}\begin{matrix}\frac{4}{x}=4x\\\frac{1}{4y}=4y\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=\frac{1}{4}\end{matrix}\right.\)

Min \(B=5\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=\frac{1}{4}\end{matrix}\right.\)

4. Chắc đề là tìm min???

\(C=a+b+\frac{1}{a}+\frac{1}{b}\ge a+b+\frac{4}{a+b}=a+b+\frac{1}{a+b}+\frac{3}{a+b}\)

\(\ge2\sqrt{\left(a+b\right)\cdot\frac{1}{a+b}}+\frac{3}{1}=5\)

Dấu "=" \(\Leftrightarrow\left\{{}\begin{matrix}a=b\\a+b=\frac{1}{a+b}\\a+b=1\end{matrix}\right.\Leftrightarrow a=b=\frac{1}{2}\)

Min \(C=5\Leftrightarrow a=b=\frac{1}{2}\)

27 tháng 2 2020

1. Áp dụng bđt \(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\) ta có:

\(\left(\frac{1}{p-a}+\frac{1}{p-b}\right)+\left(\frac{1}{p-b}+\frac{1}{p-c}\right)+\left(\frac{1}{p-c}+\frac{1}{p-a}\right)\)

\(\ge\frac{4}{2p-a-b}+\frac{4}{2p-b-c}+\frac{4}{2p-a-c}\) \(=\frac{4}{c}+\frac{4}{a}+\frac{4}{b}\)

\(\Rightarrow\frac{1}{p-a}+\frac{1}{p-b}+\frac{1}{p-c}\ge2\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)

Dấu "=" \(\Leftrightarrow a=b=c\)

2. Áp dụng bđt Cauchy ta có :

\(a\sqrt{b-1}=a\sqrt{\left(b-1\right)\cdot1}\le a\cdot\frac{b-1+1}{2}=\frac{ab}{2}\) . Dấu "=" \(\Leftrightarrow b-1=1\Leftrightarrow b=2\)

+ Tương tự : \(b\sqrt{a-1}\le\frac{ab}{2}\). Dấu "=" \(\Leftrightarrow a=2\)

Do đó: \(a\sqrt{b-1}+b\sqrt{a-1}\le ab\). Dấu "=" \(\Leftrightarrow a=b=2\)

23 tháng 7 2019

Có: \(\frac{a^3}{a^2+b^2}=a-\frac{ab^2}{a^2+b^2}\ge a-\frac{ab^2}{2ab}=a-\frac{b}{2}\)

Tương tự:

\(\frac{b^3}{b^2+c^2}\ge b-\frac{c}{2}\)

\(\frac{c^3}{c^2+a^2}\ge c-\frac{a}{2}\)

Cộng vế theo vế:

\(VT\ge a+b+c-\frac{a+b+c}{2}=\frac{a+b+c}{2}\)

\("="\Leftrightarrow a=b=c\)

4 tháng 12 2019

\(P+3=\frac{a}{b+c}+1+\frac{b}{c+a}+1+\frac{c}{a+b}+1\) \(=\left(a+b+c\right)\left(\frac{1}{b+c}+\frac{1}{c+a}+\frac{1}{a+b}\right)\)

Áp dụng Cauchy-Schwarz dạng phân thức:

\(\frac{1}{b+c}+\frac{1}{c+a}+\frac{1}{a+b}\ge\frac{9}{2\left(a+b+c\right)}\)

\(\Leftrightarrow P+3\ge\frac{9}{2}\Rightarrow P\ge\frac{3}{2}\)

\(''=''\Leftrightarrow a=b=c\)