\(\frac{12}{\sqrt{13}}\)+\(\frac{13}{\sqrt{12}}\) > <...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Đặt \(\sqrt{12}=a;\sqrt{13}=b\)

Theo đề, ta có: 

\(\dfrac{a^2}{b}+\dfrac{b^2}{a}>a+b\)

\(\Leftrightarrow a^2+b^2-a^2-2ab-b^2>0\)

\(\Leftrightarrow2ab< 0\)(đúng)

9 tháng 8 2017

Ta có:

\(\frac{12}{\sqrt{13}}+\frac{13}{\sqrt{12}}=\frac{12\sqrt{13}}{13}+\frac{13\sqrt{12}}{12}=\frac{13\sqrt{13}-\sqrt{13}}{13}+\frac{12\sqrt{12}+\sqrt{12}}{12}\)\(=\sqrt{12}+\sqrt{13}+\frac{1}{\sqrt{12}}-\frac{1}{\sqrt{13}}>\sqrt{12}+\sqrt{13}\)

29 tháng 7 2018

tính

\(\frac{a-\sqrt{ab}}{b-\sqrt{ab}}+\frac{b-\sqrt{ab}}{a+\sqrt{ab}}=\frac{a-ab+b-ab}{ab+b\sqrt{ab}-a\sqrt{ab}-ab}=\frac{a+b}{\sqrt{ab}\left(b-a\right)}\)

còn lại mk chịu

29 tháng 7 2018

bạn ghi rõ hơn nữa được không chứ mình chưa hiểu lắm

Bài 1:

a) Sửa đề: \(\left(\sqrt{12}+3\sqrt{5}-4\sqrt{135}\right)\cdot\sqrt{3}\)

Ta có: \(\left(\sqrt{12}+3\sqrt{5}-4\sqrt{135}\right)\cdot\sqrt{3}\)

\(=\sqrt{12}\cdot\sqrt{3}+3\sqrt{5}\cdot\sqrt{3}-4\sqrt{135}\cdot\sqrt{3}\)

\(=6+3\sqrt{15}-36\sqrt{5}\)

b) Ta có: \(\sqrt{252}-\sqrt{700}+\sqrt{1008}-\sqrt{448}\)

\(=3\sqrt{28}-5\sqrt{28}+3\sqrt{112}-2\sqrt{112}\)

\(=-2\sqrt{28}+\sqrt{112}=-\sqrt{112}+\sqrt{112}=0\)

c) Ta có: \(2\sqrt{40\sqrt{12}}-2\sqrt{\sqrt{75}}-3\sqrt{5\sqrt{48}}\)

\(=2\cdot4\cdot\sqrt{5}\cdot\sqrt{\sqrt{3}}-2\cdot\sqrt{5}\cdot\sqrt{\sqrt{3}}-3\cdot2\cdot\sqrt{5}\cdot\sqrt{\sqrt{3}}\)

\(=8\sqrt{5}\cdot\sqrt{\sqrt{3}}-2\sqrt{5}\sqrt{\sqrt{3}}-6\sqrt{5}\sqrt{\sqrt{3}}\)

=0

Bài 2:

a) Ta có: \(A=\frac{\sqrt{6}+\sqrt{14}}{2\sqrt{3}+\sqrt{28}}\)

\(=\frac{\sqrt{2}\left(\sqrt{3}+\sqrt{7}\right)}{2\left(\sqrt{3}+\sqrt{7}\right)}\)

\(=\frac{1}{\sqrt{2}}\)

b) Ta có: \(B=\frac{9\sqrt{5}+3\sqrt{27}}{\sqrt{5}+\sqrt{3}}\)

\(=\frac{\sqrt{405}+\sqrt{243}}{\sqrt{5}+\sqrt{3}}\)

\(=\frac{9\left(\sqrt{5}+\sqrt{3}\right)}{\sqrt{5}+\sqrt{3}}=9\)

c) Ta có: \(C=\frac{3\sqrt{8}-2\sqrt{12}+\sqrt{20}}{3\sqrt{18}-2\sqrt{27}+\sqrt{45}}\)

\(=\frac{\sqrt{72}-\sqrt{48}+\sqrt{20}}{\sqrt{162}-\sqrt{108}+\sqrt{45}}\)

\(=\frac{2\left(\sqrt{18}-\sqrt{12}+\sqrt{5}\right)}{3\left(\sqrt{18}-\sqrt{12}+\sqrt{5}\right)}=\frac{2}{3}\)

27 tháng 5 2017

chú ý\(x=\sqrt{x}^2\) tương tự với y , và các số tự nhiên dương

\(A=\frac{\sqrt{x}^2+2\sqrt{x}-3}{\sqrt{x}-1}=\frac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}{\left(\sqrt{x}-1\right)}=\sqrt{x}+3\)

\(B=\frac{\left(2\sqrt{y}\right)^2+3\sqrt{y}-7}{4\sqrt{y}+7}=\frac{\left(\sqrt{y}-1\right)\left(4\sqrt{y}+7\right)}{4\sqrt{y}+7}=\sqrt{y}-1\)

\(C=\frac{\sqrt{x}^2\sqrt{y}-\sqrt{y}^2\sqrt{x}}{\sqrt{x}-\sqrt{y}}=\frac{\sqrt{xy}\left(\sqrt{x}-\sqrt{y}\right)}{\sqrt{x}-\sqrt{y}}=\sqrt{xy}\)

\(D=\frac{\sqrt{x}^2-3\sqrt{x}-4}{\sqrt{x}^2-\sqrt{x}-12}=\frac{\left(\sqrt{x}-4\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-4\right)\left(\sqrt{x}+3\right)}=\frac{\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+3\right)}\)

\(E=\sqrt{1+2\sqrt{5}+5}+\sqrt{\sqrt{5}-2\sqrt{5}+1}=\sqrt{\left(1+\sqrt{5}\right)^2}+\sqrt{\left(\sqrt{5}-1\right)^2}\)

=>\(E=1+\sqrt{5}+\sqrt{5}-1=2\sqrt{5}\)

CÂU CUỐI chưa làm đc

28 tháng 5 2017

ý cuối cùng này :

\(D=\sqrt{13-4\sqrt{10}}+\sqrt{13+4\sqrt{10}}\)lấy bình phương 2 vế ta có

\(D^2=13-4\sqrt{10}+13+4\sqrt{10}+2\sqrt{13-4\sqrt{10}}\sqrt{13+4\sqrt{10}}\)

\(D^2=26+2\sqrt{13^2-16\sqrt{10}^2}\Leftrightarrow D^2=26+2\sqrt{9}\)

\(D^2=32\Leftrightarrow D=\sqrt{32}=4\sqrt{2}\)

6 tháng 7 2018

a ) 

\(\sqrt{31}+4< \sqrt{36}+4=10\left(1\right)\)

\(6+\sqrt{17}>6+\sqrt{16}=6+4=10\left(2\right)\)

Từ ( 1 ) ; ( 2 ) 

\(\Rightarrow\sqrt{31}+4< 10< 6+\sqrt{17}\)

\(\Rightarrow\sqrt{31}+4< \sqrt{17}+6\)

b ) 

\(\sqrt{3}+\sqrt{2}>\sqrt{1}+\sqrt{1}=2\)

c ) 

\(\sqrt{12+13}=\sqrt{25}=5\left(1\right)\)

\(\sqrt{12}+\sqrt{13}>\sqrt{4}+\sqrt{9}=2+3=5\left(2\right)\)

Từ ( 1 ) ; ( 2 ) 

\(\Rightarrow\sqrt{12+13}< \sqrt{12}+\sqrt{13}\)

26 tháng 10 2018

:V

khó vc

8 tháng 9 2019

Nếu đề đúng:

Sử dụng liên hợp để trục căn thức ở mẫu:

\(\frac{1}{\sqrt{1}+\sqrt{5}}=\frac{\sqrt{5}-1}{\left(\sqrt{5}+1\right)\left(\sqrt{5}-1\right)}=\frac{\sqrt{5}-1}{5-1}=\frac{\sqrt{5}-1}{4}\) 

Tương tự như vậy ta sẽ có:

\(N=\frac{\sqrt{5}-1}{\left(\sqrt{5}-1\right)\left(\sqrt{5}+1\right)}+\frac{\sqrt{13}-\sqrt{9}}{\left(\sqrt{13}-\sqrt{9}\right)\left(\sqrt{13}+\sqrt{9}\right)}+\frac{\sqrt{17}-\sqrt{13}}{\left(\sqrt{17}-\sqrt{13}\right)\left(\sqrt{17}+\sqrt{13}\right)}\)

\(+\frac{\sqrt{21}-\sqrt{17}}{\left(\sqrt{21}-\sqrt{17}\right)\left(\sqrt{21}+\sqrt{17}\right)}+\frac{\sqrt{25}-\sqrt{23}}{\left(\sqrt{25}-\sqrt{23}\right)\left(\sqrt{25}+\sqrt{23}\right)}\)

\(=\frac{\sqrt{5}-1}{4}+\frac{\sqrt{13}-\sqrt{9}}{4}+\frac{\sqrt{17}-\sqrt{13}}{4}+\frac{\sqrt{21}-\sqrt{17}}{4}+\frac{\sqrt{25}-\sqrt{23}}{4}\)

\(=\frac{\sqrt{5}-1+\sqrt{13}-\sqrt{9}+\sqrt{17}-\sqrt{13}+\sqrt{21}-\sqrt{17}+\sqrt{25}-\sqrt{23}}{4}\)

\(=\frac{\sqrt{5}-1-\sqrt{9}+\sqrt{21}+\sqrt{25}-\sqrt{23}}{4}=\frac{\sqrt{5}-1-3+\sqrt{21}+5-\sqrt{23}}{4}=\frac{1+\sqrt{5}+\sqrt{21}-\sqrt{23}}{4}\)

11 tháng 10 2018

a, \(\frac{3\sqrt{7}+5\sqrt{2}}{\sqrt{5}}=\frac{3\sqrt{35}+5\sqrt{10}}{5}=\frac{3\sqrt{35}+\sqrt{250}}{5}\)

Ta có: \(3\sqrt{35}< 3\sqrt{36}=3\cdot6=18< 18,5\)

\(\sqrt{250}< \sqrt{256}=16\)

\(\Rightarrow3\sqrt{35}+\sqrt{250}< 18,5+16=34,5\Rightarrow\frac{3\sqrt{35}+5\sqrt{10}}{5}< \frac{34,5}{5}=6,9\)

b,\(\sqrt{13}-\sqrt{12}=\frac{1}{\sqrt{13}+\sqrt{12}};\sqrt{7}-\sqrt{6}=\frac{1}{\sqrt{7}+\sqrt{6}}\)

Vì \(\sqrt{13}+\sqrt{12}>\sqrt{7}+\sqrt{6}\)nên \(\frac{1}{\sqrt{13}+\sqrt{12}}< \frac{1}{\sqrt{7}+\sqrt{6}}\)

\(\Rightarrow\sqrt{13}-\sqrt{12}< \sqrt{7}-\sqrt{6}\)