Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
tổng của các phân số cùng mẫu luôn có giá trị của tử thấp hơn giá trị của mẫu => tử không bằng mẫu => A không nguyên
Ta có :
\(A>\frac{1}{4}+\frac{1}{5}+\frac{1}{15}+.....+\frac{1}{15}=\frac{1}{4}+\frac{1}{5}+\frac{10}{15}>1\)
\(A< \frac{1}{4}+\frac{1}{5}+\frac{1}{6}+\frac{1}{7}+.....+\frac{1}{7}=\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+\frac{9}{7}< 2\)
\(\Rightarrow1< A< 2\)
\(\Rightarrow A\)không phải là số nguyên
Vậy A không phải là số nguyên
Ta thấy các phân số của tổng S khi quy đồng mẫu số chứa lũy thừa của 2 với số mũ lớn nhất là 24
Như vậy, khi quy đồng mẫu số, các phân số của S đều có tử chẵn, chỉ có phân số \(\frac{1}{16}\) có tử lẻ
Do đó S có tử lẻ mẫu chẵn, không là số tự nhiên (đpcm)
\(S=\frac{3}{4}+\frac{8}{9}+\frac{15}{16}+...+\frac{n^2-1}{n^2}\)
\(=1-\frac{1}{2^2}+1-\frac{1}{3^2}+1-\frac{1}{4^2}+...+1-\frac{1}{n^2}\)
\(=\left(1+1+1+...+1\right)+\left(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{n^2}\right)\)
\(=n+\left(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{n^2}\right)< n\left(1\right)\)
Ta có: \(\frac{1}{2^2}< \frac{1}{1.2}=1-\frac{1}{2}\)
\(\frac{1}{3^2}< \frac{1}{2.3}=\frac{1}{2}-\frac{1}{3}\)
...........
\(\frac{1}{n^2}< \frac{1}{\left(n-1\right)n}=\frac{1}{n-1}-\frac{1}{n}\)
\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{n^2}< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{n-1}+\frac{1}{n}=1-\frac{1}{n}< 1\)
\(\Rightarrow-\left(\frac{1}{2^2}+\frac{1}{3^2}+....+\frac{1}{n^2}\right)>-1\)
\(\Rightarrow S=n+\left(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{n^2}\right)>n+\left(-1\right)=n-1\left(2\right)\)
Từ (1) và (2) => n - 1 < S < n
Mà n - 1 và n là 2 số liên tiếp
Vậy ....
1) Tính C
\(C=\frac{1}{2!}+\frac{2}{3!}+\frac{3}{4!}+....+\frac{n-1}{n!}\)
\(=\frac{2-1}{2!}+\frac{3-1}{3!}+\frac{4-1}{4!}+...+\frac{n-1}{n!}\)
\(=1-\frac{1}{2!}+\frac{1}{2!}-\frac{1}{3!}+\frac{1}{3!}-\frac{1}{4!}+...+\frac{1}{\left(n-1\right)!}-\frac{1}{n!}\)
\(=1-\frac{1}{n!}\)
3) a) Ta có : \(P=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{199}-\frac{1}{200}\)
\(=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{199}+\frac{1}{200}-2\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{200}\right)\)
\(=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{199}+\frac{1}{200}-1-\frac{1}{2}-\frac{1}{3}-...-\frac{1}{100}\)
\(=\frac{1}{101}+\frac{1}{102}+....+\frac{1}{199}+\frac{1}{200}\left(đpcm\right)\)
Ta thấy khi quy đồng mẫu số các phân số của tổng trên, mẫu chứa lũy thừa của 2 với số mũ lớn nhất là 24, như vậy, sau khi quy đồng, các phân số đều có tử chẵn chỉ có phân số 1/16 có tử lẻ
=> tổng trên có tử lẻ, mẫu chẵn, không là số nguyên ( đpcm)
B=\(\frac{3}{4}+\frac{8}{9}+\frac{15}{16}+\frac{24}{25}+...+\frac{n^2-1}{n^2}\)
CMR b ko là số nguyên
\(B=\frac{3}{4}+\frac{8}{9}+\frac{15}{16}+\frac{24}{25}+........+\frac{n^2-1}{n^2}\)
\(=\left(1-\frac{1}{4}\right)+\left(1-\frac{1}{9}\right)+\left(1-\frac{1}{16}\right)+.......+\left(1-\frac{1}{n^2}\right)\)
\(=1-\frac{1}{4}+1-\frac{1}{9}+1-\frac{1}{16}+.......+1-\frac{1}{n^2}\)
\(=\left(1+1+1+......+1\right)-\left(\frac{1}{4}+\frac{1}{9}+\frac{1}{16}+..........+\frac{1}{n^2}\right)\)
\(=\left(n-1\right)-\left(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+.......+\frac{1}{n^2}\right)\)
Vì \(2^2=2.2>1.2\)\(\Rightarrow\frac{1}{2^2}< \frac{1}{1.2}\)
Tương tự ta có: \(\frac{1}{3^2}< \frac{1}{2.3}\); \(\frac{1}{4^2}< \frac{1}{3.4}\); .......... ; \(\frac{1}{n^2}< \frac{1}{\left(n-1\right)n}\)
\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+.......+\frac{1}{n^2}< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+.......+\frac{1}{\left(n-1\right)n}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+.......+\frac{1}{n-1}-\frac{1}{n}\)
\(=1-\frac{1}{n}< 1\)
mà \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+.........+\frac{1}{n^2}>0\)( vì các số hạng luôn > 0 )
\(\Rightarrow0< \frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+........+\frac{1}{n^2}< 1\)\(\Rightarrow\)\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+.........+\frac{1}{n^2}\)không là số nguyên (1)
mà \(n\inℤ\)\(\Rightarrow n-1\inℤ\)(2)
Từ (1) và (2) \(\Rightarrow\)B không là số nguyên (đpcm)
Ta có: \(E=\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{2}{7}+\frac{2}{9}+\frac{2}{11}\)
\(\Rightarrow E=\frac{2}{6}+\frac{2}{8}+\frac{2}{10}+\frac{2}{7}+\frac{2}{9}+\frac{2}{11}\)
Do: \(\frac{2}{6}>\frac{2}{12};\frac{2}{8}>\frac{2}{12};\frac{2}{10}>\frac{2}{12};...;\frac{2}{11}>\frac{2}{12}\)
\(\Rightarrow E=\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{2}{7}+\frac{2}{9}+\frac{2}{11}>\frac{2}{12}.6=1\) \(\left(1\right)\)
Lại có: \(\frac{2}{8}< \frac{2}{6};\frac{2}{10}< \frac{2}{6};...;\frac{2}{11}< \frac{2}{6}\)
\(\Rightarrow E=\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{2}{7}+\frac{2}{9}+\frac{2}{11}< \frac{2}{6}.6=2\) \(\left(2\right)\)
Từ \(\left(1\right)\)và \(\left(2\right)\)\(\Rightarrow1< E< 2\)
\(\Rightarrow E\notin Z\)\(\left(đpcm\right)\)
Chúc bạn học tốt !!!
b,\(D=2.\left(\frac{1}{3}+\frac{1}{15}+\frac{1}{35}+...+\frac{1}{n.\left(n+2\right)}\right)\)
\(\Rightarrow D=\frac{2}{3}+\frac{2}{15}+\frac{2}{35}+...+\frac{2}{n.\left(n+2\right)}\)
\(\Rightarrow D=\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{n.\left(n+2\right)}\)
\(\Rightarrow D=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{n}-\frac{1}{n+2}\)
\(\Rightarrow D=1-\frac{1}{n+2}=\frac{n}{n+2}< \frac{n+2}{n+2}=1\left(1\right)\)
\(\Rightarrow D=\frac{n}{n+2}>0\left(2\right)\)
Từ (1);(2)\(\Rightarrow0< D< 1\)
\(\Rightarrowđpcm\)
a,\(C>0\)
\(C=\frac{1}{11}+\frac{1}{12}+...+\frac{1}{19}< 9;\frac{1}{11}< 1\)
\(\Rightarrow0< A< 1\)
\(\Rightarrow A\notinℤ\)
c,\(E=\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{2}{7}+\frac{2}{9}+\frac{2}{11}\)
Ta quy đồng 3 số đầu
\(=\frac{2}{6}+\frac{2}{8}+\frac{2}{10}+\frac{2}{7}+\frac{2}{9}+\frac{2}{11}>\frac{6.2}{12}=1\)
\(E=\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{2}{7}+\frac{2}{9}+\frac{2}{11}\)
\(=\frac{2}{6}+\frac{2}{8}+\frac{2}{10}+\frac{2}{7}+\frac{2}{9}+\frac{2}{11}< \frac{6.2}{6}=2\)
\(1< E< 2\)
\(E\notinℤ\)