\(\frac{1}{201}\) + \(\frac{1}{202}\) + ... + 
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 3 2018

1/201 + 1/202 + ... + 1/400 > 1/400 x 200

1/201 + 1/202 + ... + 1/400 > 1/2

Vậy 1/201 + 1/202 + ... + 1/400 > 1/2

28 tháng 3 2018

Đặt \(A=\frac{1}{201}+\frac{1}{202}+...+\frac{1}{399}+\frac{1}{400}\)

Vì \(\frac{1}{201}>\frac{1}{202}>...>\frac{1}{399}>\frac{1}{400}\)nên :

\(A< \left(\frac{1}{400}+\frac{1}{400}+...+\frac{1}{400}\right)\)( Có 200 số )

\(A< \frac{1}{400}\times200\)

\(A< \frac{200}{400}\)

\(A< \frac{1}{2}\)( Điều phải chứng minh )

27 tháng 4 2019

Đặt \(S=\frac{1}{201}+\frac{1}{202}+...+\frac{1}{399}+\frac{1}{400}\)

Ta thấy :

\(\frac{1}{201}>\frac{1}{400}\)

\(\frac{1}{202}>\frac{1}{400}\)

...

\(\frac{1}{399}>\frac{1}{400}\)

\(\Rightarrow S>\frac{1}{400}+\frac{1}{400}+\frac{1}{400}+...+\frac{1}{400}\)

có 200 dãy \(\Rightarrow S>\frac{200}{400}=\frac{1}{2}\)

Vậy : \(S>\frac{1}{2}\)

7 tháng 5 2018

mik làm câu A thôi nha

ta có :

1 - 2009/2010 = 1/2010

1 - 2010/2011 = 1/2011

Phần bù nào bé thì phân số đó lớn .

Vì 1/2010 > 1/2011

Nên 2009/2010 > 2010/2011

7 tháng 5 2018

Ta thấy hiệu giữa mẫu số và tử số của hai phân số bằng nhau ( = 1 ) 
Để so sánh hai phân số, ta so sánh các hiệu. 

\(1-\frac{2009}{2010}\)và \(1-\frac{2010}{2011}\)

Ta có :

\(1-\frac{2009}{2010}=\frac{2010}{2010}-\frac{2009}{2010}=\frac{1}{2010}\)

\(1-\frac{2010}{2011}=\frac{2011}{2011}-\frac{2010}{2011}=\frac{1}{2011}\)

Ta thấy :

\(\frac{1}{2010}>\frac{1}{2011}\)

Hay :

\(1-\frac{2009}{2010}>1-\frac{2010}{2011}\)

Vậy \(\frac{2009}{2010}< \frac{2010}{2011}\)

2009/2010=1-1/2010<1-1/2011=2010/2011

vậy 2009/2010<2010/2011

3^400=(3^4)^100=81^100>64^100=4^300

=>1/3^400<1/4^300

Vậy 1/3^400<1/4^300

 

15 tháng 4 2019

a, Ta có\(\)\(\frac{2009}{2010}< \frac{2009}{2011}\)

Mà \(\frac{2009}{2011}< \frac{2010}{2011}\)

Vậy\(\frac{2009}{2010}< \frac{2010}{2011}\)

Ta có :\(\frac{1}{3^{400}}=\frac{1}{\left(3^4\right)^{100}}=\frac{1}{81^{100}}\)

\(\frac{1}{4^{300}}=\frac{1}{\left(4^3\right)^{100}}=\frac{1}{64^{100}}\)

\(\frac{1}{81^{100}}< \frac{1}{64^{100}}\)

Vậy\(\frac{1}{3^{400}}< \frac{1}{4^{300}}\)

c, Ta có : B=\(\frac{200+201}{201+202}=\frac{200}{201+202}+\frac{201}{201+202}\)

\(\Rightarrow\frac{200}{201}>\frac{200}{201+202}\)

\(\frac{201}{202}>\frac{201}{201+202}\)

Vậy A>B

d, Ta có \(A=\frac{2008}{2008\times2009}=\frac{1}{2019}\) 

\(B=\frac{2009}{2009\times2010}=\frac{1}{2010}\)

Vì \(\frac{1}{2009}>\frac{1}{2010}\)

Vậy A>B

20 tháng 12 2016

Mình sửa chút: B>1

14 tháng 4 2015

nghịch đảo 2 phân số ta có:   \(\frac{2010}{2009}v\text{à}\frac{2011}{2010}\)

 phân tích ra ta có:\(\frac{2010}{2009}=1+\frac{1}{2009}\)

                            \(\frac{2011}{2010}=1+\frac{1}{2010}\)

Vì \(\frac{1}{2009}>\frac{1}{2010}\)

nên \(\frac{2009}{2010}<\frac{2010}{2011}\)

14 tháng 4 2015

a/ Do : 2009/2010 > 2009/2011, 2009/2011 < 2010/2011 nên 2009/2010 < 2010/2011

14 tháng 4 2017

a) Ta có:

\(\frac{1}{n-1}-\frac{1}{n}=\frac{n-\left(n-1\right)}{n\left(n-1\right)}=\frac{1}{n\left(n-1\right)}>\frac{1}{n.n}=\frac{1}{n^2}\left(1\right)\)

\(\frac{1}{n}-\frac{1}{n+1}=\frac{n+1-n}{n\left(n+1\right)}=\frac{1}{n\left(n+1\right)}< \frac{1}{n.n}=\frac{1}{n^2}\left(2\right)\)

Từ \(\left(1\right)\) và \(\left(2\right)\) suy ra:

\(\frac{1}{n\left(n-1\right)}>\frac{1}{n^2}>\frac{1}{n\left(n+1\right)}\)

Hay \(\frac{1}{n-1}-\frac{1}{n}>\frac{1}{n^2}>\frac{1}{n}-\frac{1}{n+1}\) (Đpcm)