Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
n(2n-3)-2n(n+1)=2n2-3n-2n2-2n=-5n chia hết cho 5 với mọi n thuộc Z(đpcm)
Ta có :
3n+2−2n+2+3n−2n3n+2−2n+2+3n−2n =3n.32−2n.22+3n−2n3n.32−2n.22+3n−2n
=3n.9−2n.4+3n−2n3n.9−2n.4+3n−2n =3n.(9+1)−2n.(4+1)3n.(9+1)−2n.(4+1)
=3n.10−2n.5=3n.10−2n−1.2.53n.10−2n.5=3n.10−2n−1.2.5 = 3n.10−2n−1.103n.10−2n−1.10
=10.(3n−2n−1)⋮1010.(3n−2n−1)⋮10
⇒3n+2−2n+2+3n−2n⋮10⇒3n+2−2n+2+3n−2n⋮10 (ĐPCM)
TK NHA
3n + 2−2n + 2 + 3n−2n3n + 2−2n + 2 + 3n−2n =3n.32−2n.22 + 3n−2n3n.32−2n.22 + 3n−2n
=3n.9−2n.4 + 3n−2n3n.9−2n.4 + 3n−2n =3n.(9 + 1)−2n.(4 + 1)3n.(9 + 1)−2n.(4 + 1)
=3n.10−2n.5 = 3n.10−2n−1.2.53n.10−2n.5 = 3n.10−2n−1.2.5 = 3n.10−2n−1.103n.10−2n−1.10
=10.(3n−2n−1)⋮1010.(3n−2n−1)⋮10
⇒3n + 2−2n + 2 + 3n−2n⋮10⇒3n + 2−2n + 2 + 3n−2n⋮10 (ĐPCM)
TK NHA. chúc bn hok tốt @_@
với \(n=0\) ta thấy nó thỏa mãn điều kiện bài toán
giả sử \(n=k\) thì ta có : \(5^{n+2}+26.5^n+8^{2n+1}=5^{k+2}+26.5^k+8^{2k+1}⋮59\)
khi đó nếu \(n=k+1\) thì ta có :
\(5^{n+2}+26.5^n+8^{2n+1}=5^{k+1+2}+26.5^{k+1}+8^{2k+2+1}\)\(=5.5^{k+2}+5.26.5^k+8^2.8^{2k+1}=5.5^{k+2}+5.26.5^k+5.8^{2k+1}+59.8^{2k+1}\)
\(=5\left(5^{k+2}+26.5^k+8^{2k+1}\right)+59.8^{2k+1}⋮59\)
\(\Rightarrow\left(đpcm\right)\)
mod