\(\dfrac{a}{b}=\dfrac{b}{c}thi\dfrac{a^2+b^2}{b^2+c^2}=\dfrac{a}{c}\left(b,c\ne0\right)\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 12 2018

Ap dung tnh chat day ti so bang nhau ta co:

a/b=b/c suy ra a^2/b^2=b^2/c^2=(a^2+b^2)/(b^2+c^2)

suy ra a^2/b^2=(a^2+b^2)/(b^2+c^2)

suy ra a/b.b/c=(a^2+b^2)/(b^2+c^2)

suy ra a/c= (a^2+b^2)/(b^2+c^2)

25 tháng 12 2018

\(\dfrac{a}{b}=\dfrac{b}{c}\) \(=>ac=b^2\)

Ta có: \(\dfrac{a^2+b^2}{b^2+c^2}=\dfrac{a^2+ac}{ac+c^2}=\dfrac{a.\left(a+c\right)}{c.\left(a+c\right)}=\dfrac{a}{c}\)(đpcm)

12 tháng 7 2017

BÀI 1:

\(\dfrac{a}{k}=\dfrac{x}{a}\Rightarrow a^2=kx\)

\(\dfrac{b}{k}=\dfrac{y}{b}\Rightarrow b^2\)=ky

Vay \(\dfrac{a^2}{b^2}=\dfrac{kx}{ky}=\dfrac{x}{y}\)

12 tháng 7 2017

Bài 2:

Vì a=b+c nên ad=(b+c)d=bd+cd (1)

Vi c=\(\dfrac{bd}{b-d}\)nen \(bd=\)c.(b-d)=bc-cd hay bc=bd+cd (2)

Từ (1),(2) =>ad=bc=>\(\dfrac{a}{b}=\dfrac{c}{d}\)

16 tháng 8 2017

Bài 1: Nhân chéo

Bài 2:

Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{d}=\dfrac{a+b+c}{b+c+d}\)

\(\Rightarrow\left(\dfrac{a}{b}\right)^3=\left(\dfrac{a+b+c}{b+c+d}\right)^3=\dfrac{a}{b}.\dfrac{b}{c}.\dfrac{c}{d}\)

\(\Rightarrow\left(\dfrac{a+b+c}{b+c+d}\right)^3=\dfrac{a}{d}\)

\(\Rightarrowđpcm\)

16 tháng 8 2017

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{a+b+c}{a+b-c}=\dfrac{a-b+c}{a-b-c}\)

\(=\dfrac{a+b+c-a+b-c}{a+b-c-a+b+c}\)

\(=\dfrac{\left(a-a\right)+\left(b+b\right)+\left(c-c\right)}{\left(a-a\right)+\left(b+b\right)+\left(c-c\right)}\)

\(=\dfrac{2b}{2b}=1\)

\(\Rightarrow a+b+c=a+b-c\)

\(\Rightarrow c=-c\)

\(\Rightarrow c+c=0\)

\(\Rightarrow2c=0\Rightarrow c=0\)

\(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{d}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{d}=\dfrac{a.b.c}{b.c.d}=\dfrac{a}{d}\left(1\right)\)

\(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{d}\Rightarrow\left(\dfrac{a}{b}\right)^3=\left(\dfrac{b}{c}\right)^3=\left(\dfrac{c}{d}\right)^3\)

\(=\left(\dfrac{a+b+c}{b+c+d}\right)^3\left(2\right)\)

Từ \(\left(1\right)\)\(\left(2\right)\) ta có:

\(\left(\dfrac{a+b+c}{b+c+d}\right)^3=\dfrac{a}{d}\)

27 tháng 12 2018

Ta có:

\(\dfrac{1}{c}=\dfrac{1}{2}\left(\dfrac{1}{a}+\dfrac{1}{b}\right)\Leftrightarrow\dfrac{1}{c}.2=\dfrac{1}{a}+\dfrac{1}{b}\)

\(\Leftrightarrow\dfrac{2}{c}=\dfrac{a+b}{ab}\Leftrightarrow2ab=\left(a+b\right)c\)

\(\Leftrightarrow ab+ab=ac+bc\Leftrightarrow ab-bc=ac-ab\)

\(\Leftrightarrow b\left(a-c\right)=a\left(c-b\right)\Leftrightarrow\dfrac{a}{b}=\dfrac{a-c}{c-b}\)

27 tháng 12 2018

thak

18 tháng 10 2017

bz-cy/a = cx- az /b = ay-bx /c => bxz-cxy / ax = cxy-azy / b = azy-bxz/c = bxz-cxy + cxy-azy+azy-bxz / a+b+c = 0/ a+b+c = 0

Suy ra : bz -cy/a = 0 => bz-cy=0 => bz = cy => z/c = b/y

cx-az/b = 0 => cx-az=0 => cx=az => x/a = z/c

ay-bx/c = 0 => ay-bx = 0 => ay=bx=> y/b = x/a

Vậy x/a=y/b=c/z

1 tháng 11 2018

\(\dfrac{a}{b}=\dfrac{c}{d}\) (theo đề bài)

Áp dụng tính chất dãy tỉ số bằng nhau

\(\Rightarrow\dfrac{a}{b}=\dfrac{c}{d}=\dfrac{a+c}{b+d}\)

\(\Rightarrow\dfrac{a^2}{b^2}=\dfrac{c^2}{d^2}=\dfrac{\left(a+c\right)^2}{\left(b+d\right)^2}=\dfrac{a^2+c^2}{b^2+d^2}\)

Vậy \(\dfrac{a^2+c^2}{b^2+d^2}=\dfrac{\left(a+c\right)^2}{\left(b+d\right)^2}.\)

1 tháng 11 2018

\(\dfrac{a}{b}=\dfrac{c}{d}\)

Áp dụng tính chất của dãy tỉ số bằng nhau ta có :

\(\dfrac{a}{b}=\dfrac{c}{d}=\dfrac{a+c}{b+d}\)

\(\Rightarrow\left(\dfrac{a}{b}\right)^2=\left(\dfrac{c}{d}\right)^2=\left(\dfrac{a+c}{b+d}\right)^2=\dfrac{a^2}{b^2}=\dfrac{c^2}{d^2}=\dfrac{a^2+c^2}{b^2+d^2}\)

\(\Rightarrow\dfrac{a^2+c^2}{b^2+d^2}=\dfrac{\left(a+c\right)^2}{\left(b+d\right)^2}\)

AH
Akai Haruma
Giáo viên
10 tháng 3 2018

Lời giải:

Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow \left\{\begin{matrix} a=bk\\ c=dk\end{matrix}\right.\)

Khi đó:

\(\frac{3a^2+c^2}{3b^2+d^2}=\frac{3(bk)^2+(dk)^2}{3b^2+d^2}=\frac{k^2(3b^2+d^2)}{3b^2+d^2}=k^2(1)\)

Và: \(\frac{(a+c)^2}{(b+d)^2}=\frac{(bk+dk)^2}{(b+d)^2}=\frac{k^2(b+d)^2}{(b+d)^2}=k^2(2)\)

Từ \((1); (2)\Rightarrow \frac{3a^2+c^2}{3b^2+d^2}=\frac{(a+c)^2}{(b+d)^2}\)

9 tháng 3 2018

Nhã Doanh; ngonhuminh; nguyen thi vang; Nguyễn Thanh Hằng;

Hoàng Anh Thư; Mashiro Shiina; Akai Haruma; F.C; Trần Thị Hồng Ngát; Phạm Nguyễn Tất Đạt ơi!!!!!!!!!!!!!!

Giúp mk với, mk sẽ tick cho tất cả các bạn

Cảm ơn các bạn nhiều nha

5a

Ta có \(\dfrac{a}{b}=\dfrac{a^2}{b^2}\) ; \(\dfrac{c}{d}=\dfrac{c^2}{d^2}\)

\(\dfrac{a}{b}=\dfrac{c}{d}\)=> \(\dfrac{a^2}{b^2}=\dfrac{c^2}{d^2}\)=>\(\dfrac{a^2}{b^2}=\dfrac{c^2}{d^2}\)=\(\dfrac{a^2+c^2}{b^2+d^2}\)(T/c cuả dãy tỉ số bằng nhau)

=> ĐPCM

Xin lỗi nha mình nhầm đề. Nhưng bạn chỉ cần thay d bằng c là được.

18 tháng 5 2017

Đại số lớp 7

Trời tối nên chụp hơi mờ, bạn thông cảm ^^

18 tháng 5 2017

Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\)\(\Rightarrow\) a = bk ; c = dk

\(\Rightarrow\)\(\dfrac{4a^2+4c^2}{4b^2+4d^2}\)=\(\dfrac{4\left(bk\right)^2+4\left(dk\right)^2}{4b^2+4d^2}\)

=\(\dfrac{4b^2k^2+4d^2k^2}{4b^2+4d^2}\)=\(\dfrac{k^2\left(4b^2+4d^2\right)}{4b^2+4d^2}\)= k2 (1)

\(\Rightarrow\)\(\dfrac{\left(a-c\right)^2}{\left(b-d\right)^2}\)=\(\dfrac{\left(bk-dk\right)^2}{\left(b-d\right)^2}\)=\(\dfrac{[k\left(b-d\right)]^2}{\left(b-d\right)^2}\)

=\(\dfrac{k^2\left(b-d\right)^2}{\left(b-d\right)^2}\)= k2 (2)

Từ (1) và (2), suy ra:

\(\dfrac{4a^2+4c^2}{4b^2+4d^2}=\dfrac{\left(a-c\right)^2}{\left(b-d\right)^2}\) (đpcm)

25 tháng 7 2018

đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\Rightarrow\left\{{}\begin{matrix}a=bk\\c=dk\end{matrix}\right.\)

a) \(\dfrac{a-b}{a}=\dfrac{c-d}{c}\)

\(\dfrac{a-b}{a}=\dfrac{bk-b}{bk}=\dfrac{b\left(k-1\right)}{bk}=\dfrac{k-1}{k}\left(1\right)\)

\(\dfrac{c-d}{c}=\dfrac{dk-d}{dk}=\dfrac{d\left(k-1\right)}{dk}=\dfrac{k-1}{k}\left(2\right)\)

từ \(\left(1\right),\left(2\right)\Rightarrow\dfrac{a-b}{a}=\dfrac{c-d}{c}\)

b) \(\dfrac{ab}{cd}=\dfrac{a^2-b^2}{c^2-d^2}\)

\(\dfrac{ab}{cd}=\dfrac{bk.b}{dk.d}=\dfrac{b^2.k}{d^2,k}=\dfrac{b^2}{d^2}\)(3)

\(\dfrac{a^2-b^2}{c^2-d^2}=\dfrac{\left(bk\right)^2-b^2}{\left(dk\right)^2-d^2}=\dfrac{b^2\left(k^2-1\right)}{d^2\left(k^2-1\right)}=\dfrac{b^2}{d^2}\)(4)

từ (3) (4) \(\Rightarrow\)......

c) \(\dfrac{\left(a+b\right)^2}{\left(c+d\right)^2}=\dfrac{a^2+b^2}{c^2+d^2}\)

\(\dfrac{\left(a+b\right)^2}{\left(c+d\right)^2}=\dfrac{\left(bk+b\right)^2}{\left(dk+d\right)^2}=\dfrac{b^2}{d^2}\) (5)

\(\dfrac{a^2+b^2}{c^2+d^2}=\dfrac{\left(bk\right)^2+b^2}{\left(dk\right)^2+d^2}=\dfrac{b^2}{d^2}\left(6\right)\)

từ (5) (6)\(\Rightarrow\)...............