Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi ƯCLN của tử và mẫu là d.
Ta có : \(2n+3⋮d\) <=> \(3\left(2n+3\right)=6n+9⋮d\)
và \(3n+5⋮d\) <=> \(2\left(3n+5\right)=6n+10⋮d\)
=> \(6n+10-\left(6n+9\right)⋮d\)<=> \(1⋮d\)
Mà d nguyên nên d=1 => P/s tối giản
Giả sử d là ƯCLN(2n+3,3n+5)\(\left(d\inℕ^∗\right)\)
Khi đó: \(\hept{\begin{cases}\left(2n+3\right)⋮d\\\left(3n+5\right)⋮d\end{cases}\Rightarrow\hept{\begin{cases}3\left(2n+3\right)⋮d\\2\left(3n+5\right)⋮d\end{cases}\Rightarrow}\hept{\begin{cases}\left(6n+9\right)⋮d\\\left(6n+10\right)⋮d\end{cases}}}\)
\(\Rightarrow\left[\left(6n+10\right)-\left(6n+9\right)\right]⋮d\Rightarrow1⋮d\Rightarrow d=1\left(d\inℕ^∗\right)\)
\(\Rightarrow\frac{2n+3}{3n+5}\)là phân số tối giản (đpcm)
BÀi 1
Để A \(\in\) Z
=>\(\left(n+2\right)⋮\left(n-5\right)\)
=>\([\left(n-5\right)+7]⋮\left(n-5\right)\)
=>\(7⋮\left(n-5\right)\)
=>\(n-5\in\left\{1;7;-1;-7\right\}\)
=>\(n\in\left\{6;13;4;-2\right\}\)
Vậy \(n\in\left\{6;13;4;-2\right\}\)
Gọi \(ƯCLN\left(2n+5;3n+7\right)\) là \(d\)
\(\Rightarrow\)\(\left(2n+5\right)⋮d\) và \(\left(3n+7\right)⋮d\)
\(\Rightarrow\)\(3\left(2n+5\right)⋮d\) và \(2\left(3n+7\right)⋮d\)
\(\Rightarrow\)\(\left(6n+15\right)⋮d\) và \(\left(6n+14\right)⋮d\)
\(\Rightarrow\)\(\left(6n+15\right)-\left(6n+14\right)⋮d\)
\(\Rightarrow\)\(\left(6n-6n+15-14\right)⋮d\)
\(\Rightarrow\)\(1⋮d\)
\(\Rightarrow\)\(d\inƯ\left(1\right)\)
Mà \(Ư\left(1\right)=\left\{1;-1\right\}\)
\(\Rightarrow\)\(ƯCLN\left(2n+5;3n+7\right)=\left\{1;-1\right\}\)
Vậy \(\frac{2n+5}{3n+7}\) là phân số tối giản
a Gọi ước chung của 2n+5 và 3n+7 là n
2n+5 ⋮ x=>6n+15⋮x
3n+7 ⋮ x =>6n+14 ⋮x
=>1 chia hết x=> x thuộc ước của 1
Vậy phân số đó tối giản
b 6n-14 chia hết x
2n-5 chia hết x=>6n-15 chia hết x
=>1 chia hết x=> x thuộc ước của 1
Vậy phân số đó tối giản
Gọi d là (2n+5;3n+7)
\(\Rightarrow\hept{\begin{cases}2n+5⋮d\\3n+7⋮d\end{cases}}\Leftrightarrow\hept{\begin{cases}3\left(2n+5\right)⋮d\\2\left(3n+7\right)⋮d\end{cases}}\Leftrightarrow\hept{\begin{cases}6n+15⋮d\\6n+14⋮d\end{cases}}\)
=> [6n+15 - ( 6n+14 )] \(⋮\) d
=> 1 \(⋮\)d
=> phân số trên tối giản
n - 5 = 3 {n-5} = 3n-15
suy ra : 3n-15 : 3n-14 = -1 mà Ước của 1 phân số là 1 với -1 thế nên phân số đó là phân số tối giản
Hướng dẫn: Đặt (tử, mẫu)=d
Phương pháp: Tìm được d = 1.
Cách làm: Nhân tử với a, nhân mẫu với b (a, b là số nguyên) sao cho khi trừ đi 2 kết quả mới triệt tiêu được 2 biểu thức chứa n.
Cuối cùng sẽ tìm được 1 là bội của b => d=1
Còn lại cậu tự làm nhé!
Gọi ƯCLN(2n+3;3n+5)=d
Ta có:
2n+3 chia hết cho d=> 3(2n+3) chia hết cho d=>6n+9 chia hết cho d
3n+5 chia hết cho d=>2(3n+5) chia hét cho d=>6n+10 chia hết cho d
=>(6n+10)-(6n+9) chia hết cho d
=> 6n+10-6n-9 chia hết cho d
=> 1 chia hết cho d
mà d lớn nhất
=> d=1 (ĐPCM) ( vì d=1 nên 2n+3/3n+5=1, là phân số tối giản)
c,Để phân số trên là phân số tối giản thì (3n+2;5n+3) = 1
Gọi \(d\inƯCLN\left(3n+2;5n+3\right)\)
Ta có:\(\left\{{}\begin{matrix}3n+2⋮d\\5n+3⋮d\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}15n+10⋮d\\15n+9⋮d\end{matrix}\right.\) \(\Rightarrow1⋮d\)
\(\Rightarrow d=1\)
\(\Rightarrow\left(3n+2;5n+3\right)=1\)
Vậy phân số\(\dfrac{3n+2}{5n+3}\) là phân số tối giản
a,để phân số trên tối giản thì (n+1;2n+3) = 1
Gọi \(d\inƯCLN(n+1;2n+3)\) \(\left(d\in N\right)\)
Ta có: \(\left\{{}\begin{matrix}n+1⋮d\\2n+3⋮d\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}2n+2⋮d\\2n+3⋮d\end{matrix}\right.\) \(\Rightarrow1⋮d\)
\(\Rightarrow d=1\)
\(\Rightarrow\left(n+1;2n+3\right)=1\)
Vậy phân số \(\dfrac{n+1}{2n+3}\) là một phân số tối giản
Gọi d là ƯCLN (2n + 3; 3n + 5)
=> 2n + 3 chia hết cho d
3n + 5 chia hết cho d
=> 3(2n + 3) hay 6n + 9 chia hết cho d
2(3n + 5) hay 6n + 10 chia hết cho d
=> (6n + 10) - (6n + 9) chia hết cho d
=> 1 chia hết cho d
=> \(\dfrac{2n+3}{3n+5}\) là phân số tối giản (đpcm)