K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(-x^2+x-\dfrac{1}{2}\)

\(=-\left(x^2-x+\dfrac{1}{2}\right)\)

\(=-\left(x^2-x+\dfrac{1}{4}+\dfrac{1}{4}\right)\)

\(=-\left(x-\dfrac{1}{2}\right)^2-\dfrac{1}{4}< 0\)

\(-x^2+x-\dfrac{1}{2}\)

\(=-\left(x^2-x+\dfrac{1}{2}\right)\)

\(=-\left(x^2-x+\dfrac{1}{4}+\dfrac{1}{4}\right)\)

\(=-\left(x-\dfrac{1}{2}\right)^2-\dfrac{1}{4}< 0\)

28 tháng 11 2017

\(\dfrac{\left(x+\dfrac{1}{x}\right)^6-\left(x^6+\dfrac{1}{x^6}\right)-2}{\left(x+\dfrac{1}{x}\right)+x^3+\dfrac{1}{x^3}}\)

\(=\dfrac{\left(x+\dfrac{1}{x}\right)^6-\left(x^6+2+\dfrac{1}{x^6}\right)}{\left(x+\dfrac{1}{x}\right)+\left(x^3+\dfrac{1}{x^3}\right)}\)

\(=\dfrac{\left[\left(x+\dfrac{1}{x}\right)^3\right]^2-\left(x^3+\dfrac{1}{x^3}\right)^2}{\left(x+\dfrac{1}{x}\right)^3+\left(x^3+\dfrac{1}{x^3}\right)}\)

\(=\left(x+\dfrac{1}{x}\right)^3-\left(x^3+\dfrac{1}{x^3}\right)\)

\(=3x+\dfrac{3}{x}\)

\(=3\left(x+\dfrac{1}{x}\right)\)

Áp dụng bất đẳng thức \(x+\dfrac{1}{x}\ge2\forall x>0\)

\(\Rightarrow3\left(x+\dfrac{1}{x}\right)\ge6\)

\(\Rightarrowđpcm\)

28 tháng 11 2017

Akai Haruma Ace Legona Unruly Kid

ai đi ngang qua cứu e vs :((

AH
Akai Haruma
Giáo viên
29 tháng 11 2017

Lời giải:

a)

Áp dụng bất đẳng thức AM-GM:

\(x^3+x^2+x+1\geq 4\sqrt[4]{x^3.x^2.x.1}=4\sqrt[4]{x^6}\)

\(\Rightarrow (x^3+x^2+x+1)^2\geq 16\sqrt{x^6}\)

\(\Leftrightarrow (x^3+x^2+x+1)^2\geq 16x^3\) (đpcm)

Dấu bằng xảy ra khi \(x=1\)

b)

Áp dụng BĐT AM-GM:

\(\frac{b+c}{a}.1\leq \left(\frac{\frac{b+c}{a}+1}{2}\right)^2=\frac{1}{4}\left(\frac{b+c+a}{a}\right)^2\)

\(\Rightarrow \frac{a}{b+c}\geq 4\left(\frac{a}{a+b+c}\right)^2\Leftrightarrow \sqrt{\frac{a}{b+c}}\geq \frac{2a}{a+b+c}\)

Thực hiện tương tự với cac phân thức còn lại và cộng theo vế thu được:

\(\sqrt{\frac{a}{b+c}}+\sqrt{\frac{b}{a+c}}+\sqrt{\frac{c}{a+b}}\geq \frac{2a+2b+2c}{a+b+c}=2\)

Dấu bằng xảy ra khi

\(\frac{b+c}{a}=\frac{c+a}{b}=\frac{a+b}{c}=1\Rightarrow a+b+c=2a=2b=2c\)

\(\Rightarrow a=b=c\Rightarrow \frac{b+c}{a}=2\neq 1\) (vô lý)

Do đó dấu bằng không xảy ra

Vì vậy: \(\sqrt{\frac{a}{b+c}}+\sqrt{\frac{b}{a+c}}+\sqrt{\frac{c}{a+b}}>2\)

2 tháng 4 2022

2.

\(4n^3+n+3=4n^3+2n^2+2n-2n^2-n-1+4=2n\left(2n^2+n+1\right)-\left(2n^2+n+1\right)+4\)-Để \(\left(4n^3+n+3\right)⋮\left(2n^2+n+1\right)\) thì \(4⋮\left(2n^2+n+1\right)\)

\(\Leftrightarrow2n^2+n+1\in\left\{1;-1;2;-2;4;-4\right\}\) (do n là số nguyên)

*\(2n^2+n+1=1\Leftrightarrow n\left(2n+1\right)=0\Leftrightarrow n=0\) (loại) hay \(n=\dfrac{-1}{2}\) (loại)

*\(2n^2+n+1=-1\Leftrightarrow2n^2+n+2=0\) (phương trình vô nghiệm)

\(2n^2+n+1=2\Leftrightarrow2n^2+n-1=0\Leftrightarrow n^2+n+n^2-1=0\Leftrightarrow n\left(n+1\right)+\left(n+1\right)\left(n-1\right)=0\Leftrightarrow\left(n+1\right)\left(2n-1\right)=0\)

\(\Leftrightarrow n=-1\) (loại) hay \(n=\dfrac{1}{2}\) (loại)

\(2n^2+n+1=-2\Leftrightarrow2n^2+n+3=0\) (phương trình vô nghiệm)

\(2n^2+n+1=4\Leftrightarrow2n^2+n-3=0\Leftrightarrow2n^2-2n+3n-3=0\Leftrightarrow2n\left(n-1\right)+3\left(n-1\right)=0\Leftrightarrow\left(n-1\right)\left(2n+3\right)=0\)\(\Leftrightarrow n=1\left(nhận\right)\) hay \(n=\dfrac{-3}{2}\left(loại\right)\)

-Vậy \(n=1\)

 

 

2 tháng 4 2022

1. \(x^2+y^2=z^2\)

\(\Rightarrow x^2+y^2-z^2=0\)

\(\Rightarrow\left(x-z\right)\left(x+z\right)+y^2=0\)

-TH1: y lẻ \(\Rightarrow x-z;x+z\) đều lẻ.

\(x+3z-y=x+z-y+2x\) chia hết cho 2. \(\Rightarrow\)Hợp số.

-TH2: y chẵn \(\Rightarrow\)1 trong hai biểu thức \(x-z;x+z\) chia hết cho 2.

*Xét \(\left(x-z\right)⋮2\):

\(x+3z-y=x-z+4z-y\) chia hết cho 2. \(\Rightarrow\)Hợp số.

*Xét \(\left(x+z\right)⋮2\):

\(x+3z-y=x+z+2z-y\) chia hết cho 2 \(\Rightarrow\)Hợp số.

 

a: \(=\dfrac{x^3-x^2+x+3\left(x^2-1\right)+x+4}{\left(x+1\right)\left(x^2-x+1\right)}\)

\(=\dfrac{x^3-x^2+2x+4+3x^2-3}{\left(x+1\right)\left(x^2-x+1\right)}=\dfrac{x^3+2x^2+2x+1}{\left(x+1\right)\left(x^2-x+1\right)}\)

\(=\dfrac{\left(x+1\right)\left(x^2-x+1\right)+2x\left(x+1\right)}{\left(x+1\right)\left(x^2-x+1\right)}\)

\(=\dfrac{x^2+x+1}{x^2-x+1}\)

b: \(x^2+x+1=\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0\)

\(x^2-x+1=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0\)

=>A>0 với mọi x<>-1

9 tháng 12 2018

\(A=\frac{x}{x+1}-\frac{3-3x}{x^2-x+1}+\frac{x+4}{x^3+1}\)

\(A=\frac{x\left(x^2-x+1\right)}{\left(x+1\right)\left(x^2-x+1\right)}-\frac{3-3x}{\left(x+1\right)\left(x^2-x+1\right)}+\frac{x+4}{\left(x+1\right)\left(x^2-x+1\right)}\)

\(A=\frac{x^3-x^2+x-3-3x+x+4}{\left(x+1\right)\left(x^2-x+1\right)}\)

\(A=\frac{1}{\left(x+1\right)\left(x^2-x+1\right)}=\frac{1}{x^3+1}\)

12 tháng 8 2018

\(x-x^2-1\)

\(=-\left(x^2-x+1\right)\)

\(=-\left[\left(x^2-x+\dfrac{1}{4}\right)-\dfrac{1}{4}-1\right]\)

\(=-\left(x-\dfrac{1}{2}\right)^2+\dfrac{5}{4}\)

Ta có :

\(-\left(x-\dfrac{1}{2}\right)^2\le0\Rightarrow-\left(x-\dfrac{1}{2}\right)^2+\dfrac{5}{4}\le\dfrac{5}{4}< 0\forall x\)

hay \(x-x^2-1< 0\forall x\)

4 tháng 9 2018

-x^ - x - 1 = - (x^2+x+1) =  - (x^2+x+1/4+3/4) = - [(x+1/2)^2 +3/4) ]
Ta có [(X+1/2)^2+3/4 lớn hơn hoặc bằng 3/4 =>  - [(x+1/2)^2+3/4] nhỏ hơn hoặc bằng -3/4 <0 

4 tháng 9 2018

\(-\left(x^2+x+1\right)\Rightarrow-\left[x^2+2.x.\frac{1}{2}+\left(\frac{1}{2}\right)^2+1-\left(\frac{1}{2}\right)^2\right]\)

\(\Rightarrow-\left[\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\right]\Rightarrow-\left(x-\frac{1}{2}\right)^2-\frac{3}{4}\Rightarrow\le0\)