K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 4 2018

:  Delta = (-5)^2 - 4.1.1 = 21 - 80 = -59 . Vì Delta < 0 nên đa thức x^2 - 5x + 1 vô nghiệm

4 tháng 4 2018

Ta có: \(x^2+5x^2+1\)

\(=x^2+\frac{5}{2}x^2+\frac{5}{2}x^2+\left(\frac{5}{2}\right)^2-\left(\frac{5}{2}\right)^2+1\)

\(=x\left(x^2+\frac{5}{2}\right)+\frac{5}{2}\left(x^2+\frac{5}{2}\right)-\frac{21}{4}\)

\(=\left(x^2+\frac{5}{2}\right)\left(x^2+\frac{5}{2}\right)-\frac{21}{4}\)

\(=\left(x^2+\frac{5}{2}\right)^2-\frac{21}{4}\)

Ta có:\(\left(x^2+\frac{5}{2}\right)^2\ge0\)

\(\Rightarrow\left(x^2+\frac{5}{2}\right)^2-\frac{21}{4}\le0\)

Vậy đa thức trên không có nghiệm

 Ta có nghiệm của đa thức là giá trị của biến làm đa thức có giá trị bằng 0. 
Nếu f(a) = 0 => a là nghiệm của f(x). 
Do: x.f(x + 1) = (x + 2).f(x) (1) đúng với mọi x. 
+ Thay x = 0 vào (1) ta được 
0.f(0 + 1) = (0 + 2).f(0) 
=> 0 = 2.f(0) 
=> f(0) = 0 
Do f(0) = 0 => x = 0 là 1 nghiệm của đa thức trên. (2) 

+ Thay x = -2 vào (1) ta được: 
(-2).f(-2 + 1) = (-2 + 2).f(-2) 
=> (-2).f(-1) = 0.f(-2) 
=> (-2).f(-1) = 0 
=> f(-1) = 0 
=> x = -1 là 1 nghiệm của đa thức trên (3) 
Từ (2) và (3) => đa thức đã cho có ít nhất 2 nghiệm là x = 0 và x = -2

16 tháng 4 2022

\(x^2-5x+30=x^2-2.\dfrac{5}{2}.x+\left(\dfrac{5}{2}\right)^2-\left(\dfrac{5}{2}\right)^2+30=\left(x-\dfrac{5}{2}\right)^2+\dfrac{95}{4}\ge\dfrac{95}{4}>0\) => Đa thức vô nghiệm \(\forall x\)

16 tháng 4 2022

x2−5x+30=x2−2.52.x+(52)2−(52)2+30=(x−52)2+954≥954>0x2−5x+30=x2−2.52.x+(52)2−(52)2+30=(x−52)2+954≥954>0 

=> Đa thức

=> Vô nghiệm ∀x

5 tháng 5 2018

Ta có :x2+5x+4=0

=>x2+x+4x+4=0

=>x(x+1)+4(x+1)=0

=>(x+1)(x+4)=0

=>\(\orbr{\begin{cases}x+1=0\\x+4=0\end{cases}}\)

=>\(\orbr{\begin{cases}x=-1\\x=-4\end{cases}}\)

12 tháng 5 2019

+) Ta có: P(x) = 7x3 + 3x4 - x2 + 5x2 - 6x3 - 2x4 + 2014 - x3

P(x) = (7x3 - 6x3 - x3) + (3x4 - 2x4) - (x2 - 5x2) + 2014

P(x) = x4 + 4x2 + 2014

Sắp xếp : P(x) = x4 + 4x2 + 2014

+) Ta có: x4 \(\ge\)0;     4x2 \(\ge\)0  ;  2014 > 0

=> x4 + 4x2 + 2014 > 0

=> P(x) vô nghiệm

12 tháng 5 2019

\(P\left(x\right)=7x^3+3x^4-x^2+5x^2-6x^3-2x^4+2014-x^3\)

\(=\left(7x^3-6x^3-x^3\right)+\left(3x^4-2x^4\right)+\left(-x^2+5x^2\right)+2014\)

\(=x^4+4x^2+2014\)

Sắp xếp P(x) = x4 + 4x2 + 2014

Ta có: \(x^4\ge0\forall x\)

\(x^4+4x^2\ge0\forall x\)

2014 > 0

=> P(x) vô nghiệm

10 tháng 4 2016

Ta có :-5x4< hoặc = 0(*)

           -9x2< hoặc = 0(**)

            -4<0(***)

TỪ (*);(**);(***) suy ra -5x4-9x2-4< hoặc = -4

Vậy đa thức N(x)=-5x4-9x2-4 là vô nghiệm (không có nghiệm)

10 tháng 4 2016

Huỳnh Thị Thiên Kim: phân tích hằng đẳng thức

P(x)=-8x^3+6x^3+2x^3+3x^4-3x^4+4x^2-2020+2025

=4x^2+5>=5>0 với mọi x

=>P(x) không có nghiệm

10 tháng 8 2023

cảm ơn bạn

 

1 tháng 4 2017

đề  bài sai đã = 0 đâu mà vo nghiệm

4 tháng 5 2017

có mà bn sai thì đúng hơn đó!