Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 3 :
1. Thay x = -5 vào f(x) ta được :
\(\left(-5\right)^2-4\left(-5\right)+5=50\)
Vậy x = -5 không là nghiệm của đa thức trên .
Bài 2 :
1. Ta có : \(f_{\left(x\right)}=x\left(1-x\right)+\left(2x^2-x+4\right)\)
=> \(f_{\left(x\right)}=x-x^2+2x^2-x+4\)
=> \(f_{\left(x\right)}=x^2+4\)
=> \(x^2+4=0\)
Vậy đa thức trên vô nghiệm .
2. Ta có \(g_{\left(x\right)}=x\left(x-5\right)-x\left(x+2\right)+7x\)
=> \(g_{\left(x\right)}=x^2-5x-x^2-2x+7x\)
=> \(g_{\left(x\right)}=0\)
Vậy đa thức trên vô số nghiệm .
3. Ta có : \(h_{\left(x\right)}=x\left(x-1\right)+1\)
=> \(h_{\left(x\right)}=x^2-x+1\)
=> \(h_{\left(x\right)}=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\)
=> \(\left(x-\frac{1}{2}\right)^2=-\frac{3}{4}\)
Vậy đa thức vô nghiệm .
Bài 3:
\(f\left(x\right)=x^2+4x-5.\)
+ Thay \(x=-5\) vào đa thức \(f\left(x\right)\) ta được:
\(f\left(x\right)=\left(-5\right)^2+4.\left(-5\right)-5\)
\(\Rightarrow f\left(x\right)=25+\left(-20\right)-5\)
\(\Rightarrow f\left(x\right)=25-20-5\)
\(\Rightarrow f\left(x\right)=5-5\)
\(\Rightarrow f\left(x\right)=0.\)
Vậy \(x=-5\) là nghiệm của đa thức \(f\left(x\right).\)
Chúc bạn học tốt!
a) \(f\left(x\right)=2x^6+3x^2+5x^3-2x^2+4x^4-x^3+1-4x^3-x^4\)
\(f\left(x\right)=2x^6+\left(4-1\right)x^4+\left(5-1-4\right)x^3+\left(3-2\right)x^2+1\)
\(f\left(x\right)=2x^6+3x^4+x^2+1\)
b) \(2.1+3.1+1+1=7\)
c) \(\left\{{}\begin{matrix}x^6\ge0\\x^4\ge0\\x^2\ge0\end{matrix}\right.\) \(\Leftrightarrow2x^6+3x^4+x^2\ge0\Rightarrow2x^6+3x^4+x^2+1\ge1\)
=> f(x) >=1 => dpcm
\(F\left(x\right)=3x-6;x=\dfrac{6}{3}=2\)
\(H\left(x\right)=-5x+30;x=-\dfrac{30}{5}=-6\)
\(G\left(x\right)=\left(x-3\right)\left(16-4x\right)\Leftrightarrow\left[{}\begin{matrix}x-3=0;x=3\\16-4x=0;x=4\end{matrix}\right.\)
\(K\left(x\right)=x^2-81=\left(x-9\right)\left(x+9\right)\Leftrightarrow\left[{}\begin{matrix}x=-9\\x=9\end{matrix}\right.\)
\(M\left(x\right)=x^2+7x-8=\left(x-1\right)\left(x+8\right);\left[{}\begin{matrix}x=1\\x=-8\end{matrix}\right.\)
\(N\left(x\right)=5x^2+9x+4\)
\(N\left(x\right)=5x^2+5x+4x+4=5x\left(x+1\right)+4\left(x+1\right)\)
\(N\left(x\right)=\left(x+1\right)\left(5x+4\right)=0\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=-\dfrac{4}{5}\end{matrix}\right.\)
a, f(x) = x2 - 5x + 4
Ta có : a + b + c = 1 + (-5) + 4 = 0
=> f(1) = 12 - 5 + 4 = 0
Vậy x = 1 là một nghiệm của đa thức f(x)
b, f(x) = 2x2 + 3x + 1
Ta có : a - b + c = 2 - 3 + 1 = 0
=> f(-1) = 2 . (-1)2 + 3 . (-1) + 1 = 0
Vậy x = -1 là một nghiệm của đa thức f(x)
a)\(m\left(x\right)=x^2+7x-8\)
Cho \(m\left(x\right)=0\Rightarrow x^2+7x-8=0\)
\(\Rightarrow x^2-x+8x-8=0\)
\(\Rightarrow x\left(x-1\right)+8\left(x-1\right)=0\)
\(\Rightarrow\left(x-1\right)\left(x+8\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x-1=0\\x+8=0\end{matrix}\right.\)\(\Rightarrow\left[{}\begin{matrix}x=1\\x=-8\end{matrix}\right.\)
b)\(f\left(x\right)=\left(x-3\right)\left(16-4x\right)\)
Cho \(f\left(x\right)=0\Rightarrow\left(x-4\right)\left(16-4x\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x-4=0\\16-4x=0\end{matrix}\right.\)\(\Rightarrow x=4\)
c)\(n\left(x\right)=5x^2+9x+4\)
Cho \(n\left(x\right)=0\Rightarrow5x^2+9x+4=0\)
\(\Rightarrow5x^2+4x+5x+4=0\)
\(\Rightarrow x\left(5x+4\right)+\left(5x+4\right)=0\)
\(\Rightarrow\left(x+1\right)\left(5x+4\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x+1=0\\5x+4=0\end{matrix}\right.\)\(\Rightarrow\left[{}\begin{matrix}x=-1\\x=-\dfrac{4}{5}\end{matrix}\right.\)
a) Ta có: h(x) = 5x-7-(3x+1) = (5x-3x)-(7+1) = 2x-8
Vì 2x-8 = 0 nên x=4
Vậy nghiệm của đa thức h(x) là 4
b) Vì 2x-8 = 0 tại x = 4 nên 5x-7 = 3x+1 tại x = 4
Vậy f(x)=g(x) tại x =4
C1:
\(f\left(x\right)=x^2+5x+7=x^2+2.\dfrac{5}{2}x+\dfrac{25}{4}=\dfrac{25}{4}-7\\ \Leftrightarrow f\left(x\right)=\left(x+\dfrac{5}{2}\right)^2=-\dfrac{3}{4}\)
ta thấy : \(\left(x+\dfrac{5}{2}\right)^2\ge0\)
và: \(-\dfrac{3}{4}< 0\)
mà \(\left(x+\dfrac{5}{2}\right)^2=-\dfrac{3}{4}\left(vô\:lí\right)\)
vậy đa thức đã cho vô nghiệm
C2:
ta thấy:\(\Delta=b^2-4ac=5^2-4.1.7=25-28=-3< 0\)
do đó đa thức đã cho vô nghiệm