Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giả sử số tự nhiên a có n chữ số \(a=\overline{a_1a_2a_3...a_n}\)
Theo đề bài, ta có: \(\overline{2004a_1a_2a_3...a_n}⋮2018\)
\(\Rightarrow2004.10^n+\overline{a_1a_2a_3...a_n}⋮2003\)
\(\Rightarrow2003.10^n+10^n+\overline{a_1a_2a_3...a_n}⋮2003\)
Vì \(2003.10^n⋮2003\)nên \(10^n+\overline{a_1a_2a_3...a_n}⋮2003\)
Dễ thấy \(10^n+\overline{a_1a_2a_3...a_n}>0\)nên \(10^n+\overline{a_1a_2a_3...a_n}\ne0\)
\(\Rightarrow10^n+\overline{a_1a_2a_3...a_n}⋮2003\)khi và chỉ khi \(10^n+\overline{a_1a_2a_3...a_n}\ge2003\)
\(\Rightarrow n\ge4\)
Để a nhỏ nhất thì n nhỏ nhất, khi đó n = 4
\(\Rightarrow10^4+\overline{a_1a_2a_3a_4}⋮2003\)
\(\Rightarrow1988+8012+\overline{a_1a_2a_3a_4}⋮2003\)
Vì \(8012⋮2003\)nên \(1988+\overline{a_1a_2a_3a_4}⋮2003\)
\(\Rightarrow1988+\overline{a_1a_2a_3a_4}=2003k\left(k\inℕ^∗\right)\)
\(\Rightarrow\overline{a_1a_2a_3a_4}=2003k-1988\ge1000\)
\(\Rightarrow2003k\ge2988\Rightarrow k\ge1,49176...\Rightarrow k\ge2\)(vì \(k\inℕ^∗\))
Để a nhỏ nhất thì k cũng nhỏ nhất, khi đó k = 2
\(\Rightarrow\overline{a_1a_2a_3a_4}=2003.2-1988=2018\)
Vậy số tự nhiên a nhỏ nhất cần tìm là 2018.
Ta thấy 184 = 8 . 23 và \(3^{2m-1}\)chia hết cho\(3^2-1=8\)
* Nếu n = 2m chẵn thì\(3^{2m}+2003=3^{2m}-1+205.8+4\)không chia hết cho 8
*Nếu n = 2m + 1 lẻ thì\(3^{2m+1}+2003=3\left(3^{2m}-1\right)+250.8+6\)không chia hết cho 8
Vậy với mọi số nguyên dương n thí số\(3^n+2003\)đều không chia hết cho 184
a) Đặt A = 1 + 7 + 72 + 73 + 74 + ... + 72015 (có 2016 số; 2016 chia hết cho 4)
A = (1 + 7 + 72 + 73) + (74 + 75 + 76 + 77) + ... + (72012 + 72013 + 72014 + 72015)
A = 400 + 74.(1 + 7 + 72 + 73) + ... + 72012.(1 + 7 + 72 + 73)
A = 400 + 74.400 + ... + 72012.400
A = 400.(1 + 74 + ... + 72012)
A = (...0) (đpcm)
b) Dãy số 1; 7; 72; 73; 74; ...; 72015 gồm có 2016 số hạng
Ta đã biết 1 số tự nhiên khi chia cho 2015 chỉ có thể có 2015 loại số dư là dư 0; 1; 2; 3; ...; 2014. Có 2016 số mà chỉ có 2015 loại số dư nên theo nguyên lí Dirichlet sẽ có ít nhất 2 số cùng dư khi chia cho 2015
Hiệu của 2 số này chia hết cho 2015
Vậy có thể tìm được 2 số hạng của dãy mà hiệu của chúng chia hết cho 2015
Ta học rồi nếu trong một tổng mà có một số chia hết cho số chia thì chắc chắn tổng đó sẽ chia hết cho số đó
Ta có:25 chia hết cho 26
=>A= 75(4^2004+4^2003+...+4+1)+25 chia hết cho 25