K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 11 2021

bài đâu?

7 tháng 11 2021

trên ạ,bn giúp mik với

 

24 tháng 7 2015

bạn có thẻ xem cách giải ở đây nè http://diendan.hocmai.vn/showthread.php?t=330411

24 tháng 8 2017

Gọi số tự nhiên lẻ đầu tiên là x (ĐK x là số tự nhiên lẻ) 
thì 3 số tự nhiên lẻ liên tiếp là x; x+2; x+4 
Tích hai số sau hơn bình phương số đầu là 8 nên ta có phương trình: 
(x+2)(x+4)=x^2+38 
<=> x^2+2x+4x+8=x^2+38 
<=> 6x=38-8 
<=> 6x = 30 
<=> x = 5 (Thỏa mãn điều kiện) 
Vậy ba số tự nhiên lẻ liên tiếp cần tìm là: 
5; 7; 9 

Chúc bạn thành công

24 tháng 8 2017

a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)

b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)

=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)

c)Đặt x-y=a;y-z=b;z-x=c

a+b+c=x-y-z+z-x=o

đưa về như bài b

d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung

e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)

=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)

25 tháng 7 2019

câu hỏi nay là lp mấy vậy hả nói thật đi

25 tháng 7 2019

dạng toán j

22 tháng 1 2016

Vì a,b là 2 số tự nhiên liên tiếp nên b=a+1

Thay b=a+1 và c=ab vào P=

a^2 + (a+1)^2+a^2.b^2  = a^2+a^2+2a+1+a^2.(a+1)^2=

a^4+2a^3+3a^2+2a+1 = (a+1)(a^3+a^2+2a)+1= (a+1)((a^2)(a+1)+2a)+1=a^2(a+1)^2+2a.(a+1)+1=((a+1).a+1)^2 Hằng đẳng thức

vi a.(a+1) chẵn nên a.(a+1)+1 lẻ suy ra P là số chính phương lẻ

27 tháng 7 2019

Gọi 2 số tự nhiên lẻ đó làn lượt là a và a + 2

Ta có: ( a + 2 )2 - a2 = 200

a2 + 4a + 4 - a2 = 200

4a = 196

a = 49 

a + 2 = 51

Vậy 2 số tự nhiên lẻ cần tìm là 49 và 51

27 tháng 7 2019

gọi 2 số lẻ liên tiếp cần tìm là \(2k-1\)và \(2k+1\).

Vì 2k+1 > 2k-1 nên ta có \(\left(2k+1\right)^2-\left(2k-1\right)^2=200\)

\(\Leftrightarrow4k^2+4k+1-\left(4k^2-4k+1\right)=200\)

\(\Leftrightarrow8k=200\)\(\Leftrightarrow k=\frac{200}{8}=25\)

Thay k=25 vào 2k-1 và 2k+1 ta được 2 số cần tìm là 49 và 51.