K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
1 tháng 4 2021

Đề bài sai

Chỉ tồn tại duy nhất cặp x;y thỏa mãn pt khi đề bài là: 

\(x^2-4x+y-6\sqrt{y}+13=0\)

NV
1 tháng 4 2021

ĐKXĐ: ...

\(\Leftrightarrow\left(x^2-4x+4\right)+\left(y-6\sqrt{y}+9\right)=0\)

\(\Leftrightarrow\left(x-2\right)^2+\left(\sqrt{y}-3\right)^2=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}x-2=0\\\sqrt{y}-3=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=9\end{matrix}\right.\)

Vậy có duy nhất cặp  số (x;y)=(2;9) thỏa mãn phương trình

2 tháng 7 2023

\(x-y=2\Rightarrow y=x-2\). Thay vào pt đầu tiên, ta có:

\(\left(m-1\right)x+2\left(x-2\right)=m+1\) 

\(\Leftrightarrow\left(m+1\right)x=m+5\)

 Ta thấy \(m\) không thể bằng -1 được vì khi đó \(m+5=0\Leftrightarrow m=-5\), trong khi \(m\) không thể mang 2 giá trị cùng một lúc. Vì vậy, \(m\ne-1\).  \(\Rightarrow x=\dfrac{m+5}{m+1}\)

\(\Rightarrow y=x-2=\dfrac{m+5}{m+1}-2\) \(=\dfrac{3-m}{m+1}\).

Từ đó, ta có \(xy=\dfrac{\left(m+5\right)\left(3-m\right)}{\left(m+1\right)^2}\).

Rõ ràng \(\left(m+1\right)^2>0\) nên để \(xy>0\) thì \(\left(m+5\right)\left(3-m\right)>0\) \(\Leftrightarrow-5< m< 3\)

2 tháng 7 2023

Kết luận: Để hpt đã cho có nghiệm duy nhất \(x,y\) thỏa mãn ycbt thì\(-5< m< 3\) và \(m\ne-1\)

29 tháng 3 2016

 Câu trả lời hay nhất:  x² - 4x +y - 6√(y) + 13 = 0 
<=> (x^2 - 4x +4) + (√(y)^2 - 6√(y) + 9) = 0 
<=> (x-2)^2 + (√(y) -3)^2 = 0 
VT >=0 dấu = xảy ra <=> x = 2 ; y = 9 

b) (xy²)² - 16xy³ + 68y² -4xy + x² = 0 
<=> ((xy²)² - 16xy³ + 64y²) + (4y^2 - 4xy + x^2) = 0 
<=> (xy² - 8y)^2 + (2y - x)^2 = 0 
VT >=0 => dấu = <=> xy² - 8y = 0 và 2y - x = 0 
<=> y = 0 ; x = 0 hoặc x = 4 ; y = 2 hoặc x = -4 ;y = -2 
c/ 
x² - x²y - y + 8x + 7 = 0 
<=> x²(1-y) + 8x - y + 7 = 0 
xét delta' = 4^2 - (1-y)(7-y) = 16 - 7 -y^2 + 8y = -(y^2 -8y + 16) +25 = 25 - (y-4)^2 
để pt có nghiệm thì delta' >=0 
<=> (y-4)^2 <=25 
<=> -1<= y <=9 
=> max y = 9 
=> x = 3/2 hoặc x = -1/2 
3/ 
x² - 6x + 1 =0. nhân cả 2 vế với x^(n-1) ta được 
x^(n+1) - 6x^n + x^(n-1) = 0 
với S(n) = x1ⁿ +x2ⁿ ta có: 
S(n+1) - 6S(n) + S(n-1) = 0 
<=> S(n+1) = 6S(n) - S(n-1) 
với S(1) = 6 
S(2) = 22 
=> S(3) nguyên 
=> S(4) nguyên 
=> S(n) nguyên (do biểu thức truy hồi S(n+1) = 6S(n) - S(n-1)) 
ta có: 
S(1) không chia hết cho 5 
S(2) .............................. 
=> S(3) = 6S(2) - S(1) = 6.(22 -1) = 6.21 không chia hết cho 5 
S(n) và S(n-1) ko chia hết cho 5 => 
S(n+1) = S(n) + S(n-1) ko chia hết cho 5 
 

2 tháng 2 2022

hpt có nghiệm duy nhất <=>\(\dfrac{1}{m}\ne\dfrac{1}{-1}\)

                                       <=>\(m\ne-1\)

21 tháng 1 2021

 

b, \(\left\{{}\begin{matrix}x-2y=5\\mx-y=4\end{matrix}\right.\)

\(\Leftrightarrow\) \(\left\{{}\begin{matrix}x=5+2y\\m\left(5+2y\right)-y=4\end{matrix}\right.\)

\(\Leftrightarrow\) \(\left\{{}\begin{matrix}x=5+2y\\5m+2my-y=4\end{matrix}\right.\)

\(\Leftrightarrow\) \(\left\{{}\begin{matrix}x=5+2y\\2my-y=4-5m\end{matrix}\right.\)

\(\Leftrightarrow\) \(\left\{{}\begin{matrix}x=5+2y\\y\left(2m-1\right)=4-5m\end{matrix}\right.\)

Hpt trên có nghiệm duy nhất \(\Leftrightarrow\) 2m - 1 \(\ne\) 0 \(\Leftrightarrow\) m \(\ne\) \(\dfrac{1}{2}\)

Khi đó ta có hpt:

\(\left\{{}\begin{matrix}x=5+2y\\y=\dfrac{4-5m}{2m-1}\end{matrix}\right.\)

\(\Leftrightarrow\) \(\left\{{}\begin{matrix}x=5+2.\dfrac{4-5m}{2m-1}\\y=\dfrac{4-5m}{2m-1}\end{matrix}\right.\)

\(\Leftrightarrow\) \(\left\{{}\begin{matrix}x=\dfrac{3}{2m-1}\\y=\dfrac{4-5m}{2m-1}\end{matrix}\right.\)

Vậy với m \(\ne\) \(\dfrac{1}{2}\) thì hpt trên có nghiệm duy nhất \(\left\{{}\begin{matrix}x=\dfrac{3}{2m-1}\\y=\dfrac{4-5m}{2m-1}\end{matrix}\right.\)

Vì x, y trái dấu nên ta xét 2 trường hợp

Th1: x > 0; y < 0

\(\Leftrightarrow\) \(\left\{{}\begin{matrix}\dfrac{3}{2m-1}>0\\\dfrac{4-5m}{2m-1}< 0\end{matrix}\right.\)

\(\Leftrightarrow\) \(\left\{{}\begin{matrix}2m-1>0\\4-5m< 0\end{matrix}\right.\)

\(\Leftrightarrow\) \(\left\{{}\begin{matrix}m>\dfrac{1}{2}\\m>\dfrac{4}{5}\end{matrix}\right.\)

\(\Leftrightarrow\) m > \(\dfrac{4}{5}\) (Thỏa mãn)

Th2: x < 0; y > 0

\(\Leftrightarrow\) \(\left\{{}\begin{matrix}\dfrac{3}{2m-1}< 0\\\dfrac{4-5m}{2m-1}>0\end{matrix}\right.\)

\(\Leftrightarrow\) \(\left\{{}\begin{matrix}2m-1< 0\\4-5m< 0\end{matrix}\right.\)

\(\Leftrightarrow\) \(\left\{{}\begin{matrix}m< \dfrac{1}{2}\\m>\dfrac{4}{5}\end{matrix}\right.\)

\(\Leftrightarrow\) \(\dfrac{4}{5}< m< \dfrac{1}{2}\) (Vô lý)

Vậy m > \(\dfrac{4}{5}\) thì hpt có nghiệm duy nhất và thỏa mãn x, y trái dấu

c, Từ b ta có:

 Với x \(\ne\) \(\dfrac{1}{2}\) hpt có nghiệm duy nhất \(\left\{{}\begin{matrix}x=\dfrac{3}{2m-1}\\y=\dfrac{4-5m}{2m-1}\end{matrix}\right.\)

Vì x = |y| \(\Leftrightarrow\) \(\dfrac{3}{2m-1}=\left|\dfrac{4-5m}{2m-1}\right|\)

Xét các trường hợp:

Th1: \(\dfrac{3}{2m-1}=\dfrac{4-5m}{2m-1}\) 

\(\Leftrightarrow\) 3 = 4 - 5m (Vì m \(\ne\) \(\dfrac{1}{2}\))

\(\Leftrightarrow\) 5m = 1

\(\Leftrightarrow\) m = \(\dfrac{1}{5}\) (TM)

Th2: \(\dfrac{3}{2m-1}=\dfrac{5m-4}{2m-1}\)

\(\Leftrightarrow\) 3 = 5m - 4 (Vì m \(\ne\) \(\dfrac{1}{2}\))

\(\Leftrightarrow\) 5m = 7

\(\Leftrightarrow\) m = \(\dfrac{7}{5}\) (TM)

Vậy với m = \(\dfrac{1}{5}\); m = \(\dfrac{7}{5}\) thì hpt có nghiệm duy nhất và thỏa mãn x = |y|

Chúc bn học tốt!

21 tháng 1 2021

Nguyễn Lê Phước Thịnh , Hồng Phúc , Nguyễn Thị Thuỳ Linh , Tan Thuy Hoang , Nguyễn Duy Khang , Nguyễn Trần Thành Đạt