K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 12 2020

a) Gọi ƯCLN(2n + 1;3n + 1) = d

=> \(\hept{\begin{cases}2n+1⋮d\\3n+1⋮d\end{cases}}\Rightarrow\hept{\begin{cases}3\left(2n+1\right)⋮d\\2\left(3n+1\right)⋮d\end{cases}}\Rightarrow\hept{\begin{cases}6n+3⋮d\\6n+2⋮d\end{cases}}\Rightarrow\left(6n+3\right)-\left(6n+2\right)⋮d\)

=> \(1⋮d\Rightarrow d=1\)

=> 2n + 1 ; 3n + 1 là 2 số nguyên tố cùng nhau

b) Gọi ƯCLN(7n + 10 ; 5n + 7) = d

=> \(\hept{\begin{cases}7n+10⋮d\\5n+7⋮d\end{cases}}\Rightarrow\hept{\begin{cases}5\left(7n+10\right)⋮d\\7\left(5n+7\right)⋮d\end{cases}}\Rightarrow\hept{\begin{cases}35n+50⋮d\\35n+49⋮d\end{cases}}\Rightarrow\left(35n+50\right)-\left(35n+49\right)⋮d\)

=> \(1⋮d\Rightarrow d=1\)

=> 7n + 10 ; 5n + 7 là 2 số nguyên tố cùng nhau

16 tháng 11 2015

tick cho mình rồi mình lm cho

AH
Akai Haruma
Giáo viên
6 tháng 7

Lời giải:
Gọi $d=ƯCLN(3n,3n+1)$

$\Rightarrow 3n\vdots d; 3n+1\vdots d$

$\Rightarrow (3n+1)-3n\vdots d\Rightarrow 1\vdots d\Rightarrow d=1(1)$

Gọi $k=ƯCLN(3n, 5n+3)$

$\Rightarrow 3n\vdots k, 5n+3\vdots k$

$\Rightarrow 3(5n+3)-5.3n\vdots k\Rightarrow 9\vdots k$

$\Rightarrow k\in \left\{1; 3; 9\right\}$

Vậy $3n, 5n+3$ không có cơ sở để khẳng định là 2 số nguyên tố cùng nhau.

10 tháng 12 2016

a) Gọi ƯC cua 2n+1 ; 3n+1 là d

\(\begin{cases}2n+1⋮d\\3n+1⋮d\end{cases}\)

\(\Rightarrow3\left(2n+1\right)-2\left(3n+1\right)⋮d\\ \Rightarrow6n+3-6n-2⋮d\\ \Rightarrow1⋮d\\ d=1 \)

b) Gọi ƯC cua 5n+6 và 8n+7 là d

\(\Rightarrow8\left(5n+6\right)-5\left(8n+7\right)⋮d\\\Rightarrow 40n+48-40n-35⋮d\\\Rightarrow5⋮d\\ d=5 \)

 

 

31 tháng 3 2017

c)7n+10 và 5n+7

Gọi d=(7n+10,5n+7) với n \(\in\) N và d \(\in\) N*

\(\Rightarrow\)7n+10\(⋮\)d\(\Rightarrow\)5(7n+10)\(⋮\)d\(\Rightarrow\)35n+50\(⋮\)d (1)

\(\Rightarrow\)5n+7\(⋮\)d \(\Rightarrow\)7(5n+7) \(⋮\)d\(\Rightarrow\)35n+49\(⋮\)d (2)

Từ (1) và (2) suy ra: (35n+50)-(35n+49)\(⋮\)d

35n+50-35n-49 \(⋮\)d

(35n-35n)+(50-49)\(⋮\)d

0 + 1 \(⋮\)d

1 \(⋮\)d

Vì:1\(⋮\)d nên d\(\in\)Ư(1)

Mà:Ư(1)={1} nên d=1

Vậy 2n+1 và 3n+1 là hai số nguyên tố cùng nhau

30 tháng 10 2021

b: Vì 2n+3 là số lẻ

mà 4n+8 là số chẵn

nên 2n+3 và 4n+8 là hai số nguyên tố cùng nhau

8 tháng 11 2015

Mình VD cho bạn 2 bài thôi nha, các câu khác tương tự:

b)Gọi d > 0 là ước số chung của 2n+3 và 4n + 8
d Ư [2(2n + 3) = 4n + 6]
(4n + 8) - (4n + 6) = 2
d Ư(2) d {1,2}
d = 2 không là ước số của số lẻ 2n+3 d = 1
vậy 2n+3 và 4n + 8 nguyên tố cùng nhau.

c)Gọi d > 0 là ước số chung của 2n+3 và 4n + 8
d Ư [2(2n + 3) = 4n + 6]
(4n + 8) - (4n + 6) = 2
d Ư(2) d {1,2}
d = 2 không là ước số của số lẻ 2n+3 d = 1
vậy 2n+3 và 4n + 8 nguyên tố cùng nhau.

29 tháng 8 2021

Giúp mình với mn

 

29 tháng 8 2021

\(a,d=ƯCLN\left(5n+2;2n+1\right)\\ \Rightarrow2\left(5n+2\right)⋮d;5\left(2n+1\right)⋮d\\ \Rightarrow\left[5\left(2n+1\right)-2\left(5n+2\right)\right]⋮d\\ \Rightarrow-1⋮d\Rightarrow d=1\)

Suy ra ĐPCM

 

Cmtt với c,d