Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(F=-3x^2-6x-4=-\left(3x^2+6x+4\right)\)
\(=-3\left(x^2+2x+\dfrac{4}{3}\right)=-3\left(x^2+2x+1+\dfrac{1}{3}\right)\)
\(=-3\left[\left(x+1\right)^2+\dfrac{1}{3}\right]\)
\(do\) \(\left(x+1\right)^2\ge0=>\left(x+1\right)^2+\dfrac{1}{3}\ge\dfrac{1}{3}\)
\(=>-3\left[\left(x+1\right)^2+\dfrac{1}{3}\right]\le-1\)
\(=>-3\left[\left(x+1\right)^2+\dfrac{1}{3}\right]< 0\)\(=>F< 0\left(\forall x\right)\)
\(E=x^2+6x+11\)
\(=x^2+6x+9+2\)
\(=\left(x+3\right)^2+2>0\forall x\)
\(F=x^2-x+1\)
\(=x^2-2\cdot x\cdot\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{3}{4}\)
\(=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0\forall x\)
a, \(A=-x^2+2x-3=-\left(x^2-2x+1-1\right)-3=-\left(x-1\right)^2-2\le-2< 0\forall x\)
Vậy ta có đpcm
b, \(C=-x^2+4x-7=-\left(x^2-4x+4-4\right)-7=-\left(x-2\right)^2-3\le-3< 0\forall x\)
Vậy ta có đpcm
c, \(D=-2x^2-6x-5=-2\left(x^2+\frac{2.3}{2}x+\frac{9}{4}-\frac{9}{4}\right)-5\)
\(=-2\left(x+\frac{3}{2}\right)^2-\frac{1}{2}\le-\frac{1}{2}< 0\forall x\)
Vậy ta có đpcm
d, \(E=-3x^2+4x-4=-3\left(x^2-\frac{4}{3}x+\frac{4}{9}-\frac{4}{9}\right)-4\)
\(=-3\left(x-\frac{2}{3}\right)^2-\frac{8}{3}\le-\frac{8}{3}< 0\forall x\)
Vậy ta có đpcm
e, tự làm nhé
\(B=-10-x^2-6x\)
\(\Rightarrow B=-\left(x^2+6x+10\right)\)
\(\Rightarrow B=-\left(x^2+6x+9+1\right)\)
\(\Rightarrow B=-\left[\left(x+3\right)^2+1\right]\)
Vì \(\left(x+3\right)^2\ge0\forall x\)\(\Rightarrow\left(x+3\right)^2+1\ge1\)
\(\Rightarrow-\left[\left(x+3\right)^2+1\right]\le-1\)
=> Đpcm
B=\(-10-x^2-6x\)
B=\(-x^2-6x-9-1\)
B=\(-\left(x^2+6x+9\right)-1\)
=\(-\left(x+3\right)^2-1\)
Ta có : \(\left(x+3\right)^2\ge0\forall x\)
\(-\left(x+3\right)^2\le0\)
\(-\left(x+3\right)^2-1\le-1\)
Vậy B luôn âm với mọi x
\(A=x^2+2x+2=x^2+2x+1+1\)
\(=\left(x+1\right)^2+1>0\)
\(B=x^2+x+1=x^2+x+\frac{1}{4}+\frac{3}{4}\)
\(=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}>0\)
tự làm tiếp đi chị
Ta có :
\(F=-3x^2-6x-4=-3\left(x^2+2x+\frac{4}{3}\right)=-3\left(x^2+2x+1+\frac{1}{3}\right)\)
\(=-3\left(x+1\right)^2-1< 0\forall x\)
Vì \(\left(x+1\right)^2\ge0\forall x\Rightarrow-3\left(x+1\right)^2\le0\forall x;-1< 0\)
Vậy ta có đpcm
Trả lời:
\(F=-3x^2-6x-4=-3.\left(x^2+2x+\frac{4}{3}\right)=-3.\left[\left(x^2+2x+1\right)+\frac{1}{3}\right]\)
\(=-3.\left[\left(x+1\right)^2+\frac{1}{3}\right]=-3\left(x+1\right)^2-1\)
ta có: \(\left(x+1\right)^2\ge0\forall x\)
\(\Leftrightarrow-3\left(x+1\right)^2\le0\forall x\)
\(\Leftrightarrow-3\left(x+1\right)^2-1\le-1\forall x\)( đpcm )
Dấu "=" xảy ra khi x + 1 = 0 <=> x = - 1
Vậy biểu thức F có giá trị âm với mọi x