Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
biến đổi vế trái : a. \(\left(a+b\right)^2=a^2+2ab+B^2=VP\)
b. \(\left(a-b\right)^3=a^3-3a^2b+3ab^2-b^3=VP\)
c. \(\left(a+b+c\right)^2=a^2+b^2+c^2+2ab+2bc+2ca=VP\)
xem 7 hằng đẳng thức đáng nhớ
a)\(=\left(a+b\right)^2=\left(a+b\right)\left(a+b\right)=a^2+ab+ab+b^2\)
\(=a^2+2ab+b^2\)
b)\(\left(a-b\right)^3=\left(a-b\right)\left(a-b\right)\left(a-b\right)=\left(a^2-ab-ab+b^2\right)\left(a-b\right)\)
\(=\left(a^2-2ab+b^2\right)\left(a-b\right)\)
\(=a^3-a^2b-2a^2b+2ab^2+ab^2-b^3\)
\(=a^3-3a^2b-3ab^2-b^3\)
c)\(\left(a+b+c\right)^2=\left(a+b+c\right)\left(a+b+c\right)\)
\(=a^2+ab+ac+ab+b^2+bc+ac+cb+c^2\)
\(=a^2+b^2+c^2+2ab+2bc+2ac\)
\(M=\left(a+b\right)\left(a^2-ab+b^2\right)+3ab\left(a^2+b^2+2ab-2ab\right)+6a^2b^2\left(a+b\right)\)
\(M=a^2+2ab+b^2-3ab+3ab-6a^2b^2+6a^2b^2\)
\(M=\left(a+b\right)^2=1\)
\(M=a^3+b^3+3ab\left(a^2+b^2\right)+6a^2b^2\left(a+b\right)\)
\(=\left(a+b\right)^3-3ab\left(a+b\right)+3ab\left(a^2+b^2+2ab\right)\)
\(=1-3ab+3ab\left(a+b\right)^2\)
= 1
\(M=a^3+b^2+3ab\left(a^2+b^2\right)+6a^2b^2\left(a+b\right)\)
\(M=\left(a+b\right)^3-3ab\left(a+b\right)+3ab\left(\left(a+b\right)^2-2ab\right)+6a^2b^2\left(a+b\right)\)
\(M=1^3-3ab.1+3ab\left(1^2-2ab\right)+6a^2b^2.1\)
\(M=1-3ab+3ab-6a^2b^2+6a^2b^2=1\)
vậy \(M=1\) khi \(a+b=1\)
1.
\(2a^2b^2+2b^2c^2+2c^2a^2-a^4-b^4-c^4>0\\ \Leftrightarrow a^4+b^4+c^4-2a^2b^2-2b^2c^2-2c^2a^2< 0\\ \Leftrightarrow\left(a^4+b^4+c^4+2a^2b^2-2b^2c^2-2c^2a^2\right)-4a^2b^2< 0\\ \Leftrightarrow\left(a^2+b^2-c^2\right)^2-4a^2b^2< 0\\ \Leftrightarrow\left(a^2+b^2-c^2-2ab\right)\left(a^2+b^2-c^2+2ab\right)< 0\\ \Leftrightarrow\left[\left(a-b\right)^2-c^2\right]\left[\left(a+b\right)^2-c^2\right]< 0\\ \Leftrightarrow\left(a-b+c\right)\left(a-b-c\right)\left(a+b-c\right)\left(a+b+c\right)< 0\left(1\right)\)
Vì a,b,c là độ dài 3 cạnh của 1 tg nên \(\left\{{}\begin{matrix}a+c>b\\a-b< c\\a+b>c\\a+b+c>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a-b+c>0\\a-b-c< 0\\a+b-c>0\\a+b+c>0\end{matrix}\right.\)
Do đó \(\left(1\right)\) luôn đúng (do 3 dương nhân 1 âm ra âm)
Từ đó ta được đpcm
1) \(\left(a+b\right)^2\)
\(=\left(a+b\right)\left(a+b\right)\)
\(=a^2+ab+ab+b^2\)
\(=a^2+2ab+b^2\left(dpcm\right)\)
2) \(\left(a-b\right)^3\)
\(=\left(a-b\right)\left(a-b\right)\left(a-b\right)\)
\(=\left(a^2-ab-ab+b^2\right)\left(a-b\right)\)
\(=\left(a^2-2ab+b^2\right)\left(a-b\right)\)
\(=a^3-a^2b-2a^2+2ab^2+ab^2-b^3\)
\(=a^3-3a^2b+3ab^2-b^3\left(dpcm\right)\)
\(M=a^3+b^3+3ab\left(a^2+b^2\right)+6a^2b^2\left(a+b\right)\)
\(=\left(a+b\right)^3-3ab\left(a+b\right)+3ab\left[\left(a+b\right)^2-2ab\right]+6a^2b^2\)
\(=1-3ab+3ab\left[1-2ab\right]+6a^2b^2\)
\(=1-3ab+3ab-6a^2b^2+6a^2b^2\)
=1
a) \(x^2+2x+1=\left(x+1\right)^2\)
b) \(9x^2+y^2+6xy=\left(3x+y\right)^2\)
c) \(25a^2+4b^2-20ab=\left(5a-2b\right)^2\)
d) \(x^2-x+\frac{1}{4}=\left(x-\frac{1}{2}\right)^2\)
e) \(\left(2x+3y\right)^3+2\left(2x+3y\right)+1=\left(2x+3y+1\right)^2\)
f) mk chỉnh lại đề nha:
\(2xy^2+x^2y^4+1=\left(xy^2+1\right)^2\)
g) \(x^2+6xy+9y^2=\left(x+3y\right)^2\)
h) \(x^2-10xy+25y^2=\left(x-5y\right)^2\)
1) \(\left(a+b\right)^3=\left(a+b\right)\left(a+b\right)^2=\left(a+b\right)\left(a^2+2ab+b^2\right)\)
\(=a^3+2a^2b+ab^2+a^2b+2ab^2+b^3\)
\(=a^3+3a^2b+3ab^2+b^3\)
2) \(\left(a-b\right)^3=\left(a-b\right)\left(a-b\right)^2=\left(a-b\right)\left(a^2-2ab+b^2\right)\)\(=a^3-2a^2b+ab^2-a^2b+2ab^2-b^3\)
\(=a^3-3a^2b+3ab^2-b^3\)