Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1, Số có tận cùng là 3 khi nâng lên lũy thừa 4n sẽ có tận cùng là 1
Do đó: \(43^{43}=43^{4.10+3}=\left(....1\right).\left(...7\right)=\left(...7\right)\)
Số có tận cùng là 7 khi nâng lên lũy thừa 4n sẽ có tận cùng là 1
Do đó: \(17^{17}=17^{4.4+1}=\left(.....1\right).\left(...7\right)=\left(...7\right)\)
\(\Rightarrow43^{43}-17^{17}=\left(...7\right)-\left(....7\right)=\left(....0\right)\)
Số có tận cùng là 0 thì chia hết cho 5
\(\Rightarrow43^{43}-17^{17}⋮5\)
2. Tổng các chữ số của \(100^{1995}\)là:
1+0+0+....+0=1
\(\Rightarrow\)Tổng các chữ số của \(100^{1995}\)và 8 là:
1+8=9 \(⋮\)9
\(\Rightarrow\left(100^{1995}+8\right)⋮9\)
Vậy \(\frac{100^{1995}+8}{9}\)là số tự nhiên
3, \(3+3^2+3^3+....+3^{100}\)
\(=\left(3+3^2+3^3+3^4\right)+....+\left(3^{96}+3^{97}+3^{98}+3^{99}\right)\)
\(=3\left(1+3+3^2+3^3\right)+....+3^{96}\left(1+3+3^2+3^3\right)\)
\(=40\left(3+3^5+...+3^{96}\right)\)
\(\Rightarrow\left(3+3^2+3^3+....+3^{100}\right)⋮40\)(vì có chứa thừa số 40)
Chứng tỏ rằng :
a) 1+5+52+53+.......+5501 \(⋮\)6
b) 2+22 +23 +.. + 2100 vừa \(⋮\)31, vừa \(⋮\) cho 5
a/ \(1+5+5^2+..........+5^{501}\)
\(=\left(1+5\right)+\left(5^2+5^3\right)+............+\left(5^{500}+5^{501}\right)\)
\(=1\left(1+5\right)+5^2\left(1+5\right)+...........+5^{500}\left(1+5\right)\)
\(=1.6+5^2.6+.............+5^{500}.6\)
\(=6\left(1+5^2+..........+5^{500}\right)⋮6\left(đpcm\right)\)
b/ \(2+2^2+2^3+............+2^{100}\)
\(=\left(2+2^2+2^3+2^4+2^5\right)+............+\left(2^{96}+2^{97}+2^{98}+2^{99}+2^{100}\right)\)
\(=2\left(1+2+2^2+2^3+2^4\right)+............+2^{96}\left(1+2+2^2+2^3+2^4\right)\)
\(=2.31+..........+2^{96}.31\)
\(=31\left(2+........+2^{96}\right)⋮31\left(đpcm\right)\)
a)1+5+5^2+5^3+........+5^501
= 6+(5^2+5^3)+(5^4+5^5)......+(5^500+5^501)
=6+150+150(5^2+5^3)+150(5^4+5^5).......150(5^499+5^500)
=6+150(5^2+5^3+.......+5^500)
mà 6 chia hết cho 6
150(5^2+5^3+.......+5^500) chia hết cho 6
=> 6+150(5^2+5^3+.......+5^500) chia hết cho 6
=> 6+150+150(5^2+5^3)+150(5^4+5^5).......150(5^499+5^500) chia hết cho 6
=> 6+(5^2+5^3)+(5^4+5^5)......+(5^500+5^501) chia hết cho 6
=> 1+5+5^2+5^3+........+5^501 chia hết cho 6
Đề sai rồi: bạn lấy n=0 thì 32+612+5=2176782350 không chia hết cho 22
bài 1 : thực hiện phép tính
a) 3.52+15.22-26:2
= 3.25 + 15.4 - 26 : 2
= 75 + 60 - 13
= 135 - 13
= 122
b) 20:22+59:58
= 20:4 + 5
= 5 + 5
= 10
c) 100:52+7.32
= 100:25 + 7.9
= 4 + 63
= 67
d) 295-(31-22.5)2
= 295-(31-4.5)2
= 295 - 112
= 295 - 121
= 174
e) (-47)-[(45.24-52.12):14]
= (-47)-[(45.16-25.12):14]
= (-47)-[(720-300):14]
= (-47)-( 420:14 )
= (-47) - 30
= -77
f) (-2011)+5.[300-(17-7)2]
= (-2011)+5.(300-102)
= (-2011)+5.(300-100)
= (-2011)+5.200
= (-2011)+1000
= -1011
g) 5.[29-(6-1)2]-129
= 5.(29-52)-129
= 5.(29-25)-129
= 5.4-129
= 20-129
= -109
Đúng thì tik cái nha ! Thanks nhiều !
a, A = 1 + 2 + 22 + ... + 299
= (1 + 2) + (22 + 23) + ... + (298 + 299)
= 1(1 + 2) + 22(1 + 2) + ... + 298(1 + 2)
= 1 . 3 + 22 . 3 + ... + 298 . 3
Vì 3 chia hết cho 3 nên 1 . 3 + 22 . 3 + ... + 298 . 3 chia hết cho 3
hay A chia hết cho 3 (đpcm)
b, A = 1 + 2 + 22 + ... + 299
= (1 + 2 + 22 + 23) + (24 + 25 + 26 + 27) + ... + (296 + 297 + 298 + 299)
= 1 . 15 + 24 . 15 + ... + 296 . 15
Vì 15 chia hết cho 15 nên 1 . 15 + 24 . 15 + ... + 296 . 15 chia hết cho 15
hay A chia hết cho 15 (đpcm)
Tiếp bài của @trankhanhvy2008
A = 1 + 2 + 22 + 23 + 24 + ... + 299
2A = 2( 1 + 2 + 22 + 23 + 24 + ... + 299 )
= 2 + 22 + 23 + 24 + ... + 2100
2A - A = ( 2 + 22 + 23 + 24 + ... + 2100 ) - ( 1 + 2 + 22 + 23 + 24 + ... + 299 )
=> A = 2 + 22 + 23 + 24 + ... + 2100 - 1 - 2 - 22 - 23 - 24 - ... - 299
= 2100 - 1
2100 - 1 < 2100
=> A < 2100
=(2+2^2+2^3+2^4)+(2^5+2^6+2^7+2^8)+.....+(+2^97+2^98+2^99+2^100)
=30(gì gì đó tự nhóm vào)chia hết cho 5
(2+22+23+24)+...+(297+298+299+2100)
= 2(1+22+23+24)+...+297(1+22+23+24)
= 2 . 30 +...+ 297.30
= ( 2+ ...+ 297) . 30
Vì 30 \(⋮\)5 \(\Rightarrow\) ( 2+ ...+ 297) . 30 : 5 (ĐPCM)