K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 1 2016

\(C=n^4-4n^3-4n^2+16n=n\left(n-4\right)\left(n-2\right)\left(n+2\right)\)

\(n=2k\Leftrightarrow\)\(C=n\left(n-4\right)\left(n-2\right)\left(n+2\right)=2^4k\left(k-2\right)\left(k-1\right)\left(k+1\right)\)

Chứng minh  \(k\left(k-2\right)\left(k-1\right)\left(k+1\right)\) chia hết cho 24

=> C chia hết cho 24.24 = 384

28 tháng 1 2021

Đặt A = n4 - 4n3 - 4n2 + 16n

= n3(n - 4) - 4n(n - 4)

= (n - 4)(n3 - 4n)

= (n - 4)n(n2 - 4)

= (n - 4)n(n - 2)(n + 2)

= (n - 4)(n - 2)n(n + 2) 

Vì n chẵn => n = 2k (k \(\inℕ^∗\))

Khi đó A = (2k - 4)(2k - 2)2k(2k + 2)

= 2(k - 2).2(k - 1).2k.2(k + 1)

= 16(k - 2)(k - 1)k(k + 1) 

Vì (k - 2)(k - 1)k(k + 1) là tích 4 số nguyên liên tiếp 

=> Tồn tại 2 số chia hết cho 2 ; 4 

Mà  n > 4 => k > 2 

 => (k - 2)(k - 1).k(k + 1) \(⋮\)

lại có (k - 2)(k - 1)k(k + 1)  \(⋮\)3 (tích 4 số liên tiếp => tồn tại 1 số chia hết cho 3)

Mà ƯCLN(8;3) = 1

=> (k  - 2)(k - 1)k(k + 1) \(⋮\)8.3 = 24

=> A \(⋮\)384 

28 tháng 1 2021

n chẵn > 4 mà Xyz ? 

\(=n^3\left(n-4\right)-4n\left(n-4\right)\)

\(=\left(n-4\right)\cdot n\cdot\left(n-2\right)\left(n+2\right)\)

\(=2k\left(2k-2\right)\left(2k+2\right)\left(2k-4\right)\)

\(=16k\left(k-1\right)\left(k+1\right)\left(k-2\right)\)

Vì k-2;k-1;k;k+1 là 4 số liên tiếp

nên \(k\left(k-1\right)\left(k+1\right)\left(k-2\right)⋮24\)

=>16k(k-1)(k+1)(k-2) chia hết cho 384

8 tháng 9 2016

Ta có 384 = 3.128 và (3; 128) = 1 Lại có n chẵn và n > 4  n = 2k ( k  N, k > 2)  A = n4 – 4n3 – 4n + 16n = 16k4 – 32k3 – 16k2 + 32k = 16k(k3 – 2k2 – k + 2) = 16k(k – 2)(k – 1)(k + 1) Mà k, k – 2, k – 1, k + 1 là 4 số nguyên liên tiếp nên luôn có một số chia hết cho 2 và một số chia hết cho 4.  k(k – 2)(k – 1)(k + 1)  8  A  16.8 hay A  128 Mặt khác ba trong 4 số nguyên liên tiếp k, k – 2, k – 1, k + 1 phải có một số chia hết cho 3 nên A  3 mà (3; 128) = 1 nên A  384. Vậy A = n4 – 4n3 – 4n2 + 16n 384 với mọi n chẵn và n > 4

bạn chứng minh tương tự như trên nhé tha số thôi leu

8 tháng 9 2016

Do n là số chẵn => n = 2.k (k > 1)

Ta có:

n4 - 4n3 - 4n2 + 16n

= (2k)4 - 4.(2k)3 - 4.(2k)2 + 16.2k

= 24.k4 - 4.23.k3 - 4.22.k2 + 32k

= 16.k4 - 32k- 16k2 + 32k

= 16k3.(k - 2) - 16k.(k - 2)

= (k - 2).(16k3 - 16k)

= (k - 2).16k.(k2 - 1)

= 16.(k - 2)(k - 1).k.(k + 1)

Vì (k - 2).(k - 1).k.(k + 1) là tích 4 số tự nhiên liên tiếp nên (k - 2).(k - 1).k.(k + 1) chia hết cho 3 và 8

Mà (3;8)=1 => (k - 2).(k - 1).k.(k + 1) chia hết cho 24

=> 16.(k - 2).(k - 1).k.(k + 1) chia hết cho 384

=> n4 - 4n3 - 4n2 + 16n chia hết cho 384 (đpcm)

9 tháng 10 2019

Câu hỏi của Nghĩa Nguyễn - Toán lớp 9 - Học toán với OnlineMath

20 tháng 1 2020

Bạn tham khảo tại đây nhé!! 

olm.vn/hoi-dap/detail/195135296784.html

20 tháng 1 2020

\(n^4-4n^3-4n^2+16n=n\left(n^3-4n^2-4n+16\right)\)

\(=n\left[n^2\left(n-4\right)-4\left(n-4\right)\right]=n\left(n-4\right)\left(n^2-4\right)=n\left(n-4\right)\left(n-2\right)\left(n+2\right)\)

Vì n là số tự nhiên chẵn \(\Rightarrow n=2k\)\(k\inℕ\))

\(\Rightarrow2k\left(2k-4\right)\left(2k-2\right)\left(2k+2\right)=16k\left(k-2\right)\left(k-1\right)\left(k+1\right)\)

Vì \(k\)\(k-2\)\(k-1\)\(k+1\)là 4 số tự nhiên liên tiếp

\(\Rightarrow\)Luôn tồn tại ít nhất 2 số chẵn liên tiếp \(\Rightarrow k\left(k-2\right)\left(k-1\right)\left(k+1\right)⋮8\)

Vì \(k\)\(k-1\)\(k+1\)là 3 số tự nhiên liên tiếp \(\Rightarrow k\left(k-1\right)\left(k+1\right)\left(k-2\right)⋮3\)

mà \(\left(3;8\right)=1\)\(\Rightarrow k\left(k-2\right)\left(k-1\right)\left(k+1\right)⋮24\)

\(\Rightarrow16k\left(k-2\right)\left(k-1\right)\left(k+1\right)⋮384\)

hay \(n^4-4n^3-4n^2+16n⋮384\)

19 tháng 9 2019

không ai cứu cậu đâu :))