Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt:\(M=\frac{1}{2}\cdot\frac{3}{4}...\frac{9999}{10000}\)
\(N=\frac{2}{3}\cdot\frac{4}{5}...\frac{10000}{10001}\)
Dễ dàng nhận thấy: \(\frac{1}{2}<\frac{2}{3};\frac{3}{4}<\frac{4}{5};...;\frac{9999}{10000}<\frac{10000}{10001}\)
\(\Rightarrow\)M < N
Mặt khác:
\(M.N=\left(\frac{1}{2}\cdot\frac{3}{4}\cdot\frac{5}{6}...\frac{9999}{10000}\right).\left(\frac{2}{3}\cdot\frac{4}{5}\cdot\frac{6}{7}...\frac{10000}{10001}\right)\)
\(M.N=\frac{1}{2}\cdot\frac{2}{3}\cdot\frac{3}{4}...\frac{9999}{10000}\cdot\frac{10000}{10001}\)
\(M.N=\frac{1.2.3...9999.10000}{2.3.4...10000.10001}\)
\(M.N=\frac{1}{10001}\)
Mà M < N \(\Rightarrow\)M.M<M.N
Hay \(M.M<\frac{1}{10001}<\frac{1}{10000}=\frac{1}{100}\cdot\frac{1}{100}\)
\(\Rightarrow M<\frac{1}{100}\)(đpcm)
ta có :
1/2 < 2/3
2/3 <3/4
.........
9999/10000 < 10000/10001
suy ra : A2 < 1/22/33/4*****9999/1000010000/10001
suy ra : A2 < 1/10001 < 1/10000= (1/100)2
suy ra A2 < (1/100)2 . Từ đó: A < 1/100
2 là mũ 2 nha bạn
Ta có :
\(A<\frac{2}{3}.\frac{4}{5}.\frac{6}{7}.............\frac{10000}{10001}=M\)
=> A.A < A.M = \(\frac{1}{10001}\)
=> A2 < \(\frac{1}{10000}=\left(\frac{1}{100}\right)^2\)
=> A < \(\frac{1}{100}\)
k nha bạn
Ta có: \(C=\dfrac{1}{2}\cdot\dfrac{3}{4}\cdot\dfrac{5}{6}...\dfrac{9999}{10000}\)
\(C=\dfrac{1\cdot3\cdot5...9999}{2\cdot4\cdot6...10000}\)
Gọi \(D=\dfrac{2}{3}\cdot\dfrac{4}{5}\cdot\dfrac{6}{7}...\dfrac{10000}{10001}\)
Mà \(\dfrac{1}{2}< \dfrac{2}{3};\dfrac{3}{4}< \dfrac{4}{5};\dfrac{5}{6}< \dfrac{6}{7};...;\dfrac{9999}{10000}< \dfrac{10000}{10001}\)
\(\Rightarrow\dfrac{1}{2}\cdot\dfrac{3}{4}\cdot\dfrac{5}{6}...\dfrac{9999}{10000}< \dfrac{2}{3}\cdot\dfrac{4}{5}\cdot\dfrac{6}{7}...\dfrac{10000}{10001}\)
\(\Rightarrow C< D\)
Ta lại có: \(C\cdot D=\left(\dfrac{1}{2}\cdot\dfrac{3}{4}\cdot\dfrac{5}{6}...\dfrac{9999}{10000}\right)\left(\dfrac{2}{3}\cdot\dfrac{4}{5}\cdot\dfrac{6}{7}...\dfrac{10000}{10001}\right)\)
\(\Rightarrow C\cdot D=\dfrac{1}{2}\cdot\dfrac{2}{3}\cdot\dfrac{3}{4}\cdot\dfrac{4}{5}\cdot\dfrac{5}{6}\cdot\dfrac{6}{7}...\dfrac{9999}{10000}\cdot\dfrac{10000}{10001}\)
\(\Rightarrow C\cdot D=\dfrac{1\cdot2\cdot3\cdot4\cdot5\cdot6...9999\cdot10000}{2\cdot3\cdot4\cdot5\cdot6\cdot7...10000\cdot10001}\)
\(\Rightarrow C\cdot D=\dfrac{1}{10001}\)
Mà \(C< D\)
\(\Rightarrow C\cdot C< C\cdot D\)
\(\Rightarrow C\cdot C< \dfrac{1}{10001}\)
\(\Rightarrow C< \dfrac{1}{10001}\)
Mà \(\dfrac{1}{10001}< \dfrac{1}{100}\)
\(\Rightarrow C< \dfrac{1}{100}\)
Vậy \(C< \dfrac{1}{100}\)
C = \(\dfrac{1}{2}\).\(\dfrac{3}{4}\).\(\dfrac{5}{6}\)....\(\dfrac{9999}{10000}\)
C < \(\dfrac{2}{3}.\dfrac{4}{5}.\dfrac{6}{7}....\dfrac{10000}{10001}\)
C2 < \(\dfrac{1.\left(3.5.7...9999\right)}{\left(2.4.6...10000\right)}.\dfrac{\left(2.4.6...10000\right)}{\left(3.5.7...9999\right).10001}\)
C2 < \(\dfrac{1}{10001}\)
C2 < \(\left(\dfrac{1}{100}\right)^2\)
C < \(\dfrac{1}{100}\)
Vậy \(\dfrac{1}{2}.\dfrac{3}{4}.\dfrac{5}{6}....\dfrac{9999}{10000}< \dfrac{1}{100}\)
Chúc bạn học tốt !