K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 5 2019

ta có \(-a^2+a-3=-\left(a^2-\frac{2a.1}{2}+\frac{1}{4}\right)+\frac{1}{4}-3\)

  = \(-\left(a-\frac{1}{2}\right)^2-2.75\)

vì \(-\left(a-\frac{1}{2}\right)^2\le0\)với mọi a 

nên biểu thức luôn âm

9 tháng 5 2019

\(-a^2+a-3\)

\(=-\left(a^2-a+3\right)\)

\(=-\left(a^2-2.\frac{1}{2}a+\frac{1}{4}-\frac{1}{4}+3\right)\)

\(=-\left[\left(a-\frac{1}{2}\right)^2+\frac{11}{4}\right]\)

Vì \(\left(a-\frac{1}{2}\right)^2\ge0\)

\(\Rightarrow\left(a-\frac{1}{2}\right)^2+\frac{11}{4}>0\)

\(\Rightarrow-\left[\left(a-\frac{1}{2}\right)^2+\frac{11}{4}\right]< 0\)

\(\Leftrightarrow-a^2+a-3< 0\)\(\left(đpcm\right)\)

19 tháng 7 2021

hello mik biết giải bài này nhưng bn phải viết rõ

11 tháng 9 2020

Bài 1.

( 1 - 3x )( x + 2 )

= 1( x + 2 ) - 3x( x + 2 )

= x + 2 - 3x2 - 6x 

= -3x2 - 5x + 2

= -3( x2 + 5/3x + 25/36 ) + 49/12

= -3( x + 5/6 )2 + 49/12 ≤ 49/12 ∀ x

Đẳng thức xảy ra <=> x + 5/6 = 0 => x = -5/6

Vậy GTLN của biểu thức = 49/12 <=> x = -5/6

Bài 2.

A = x2 + 2x + 7

= ( x2 + 2x + 1 ) + 6

= ( x + 1 )2 + 6 ≥ 6 > 0 ∀ x

=> A vô nghiệm ( > 0 mà :)) )

Bài 3.

M = x2 + 2x + 7

= ( x2 + 2x + 1 ) + 6

= ( x + 1 )2 + 6 ≥ 6 > 0 ∀ x

=> đpcm

Bài 4.

A = -x2 + 18x - 81

= -( x2 - 18x + 81 )

= -( x - 9 )2 ≤ 0 ∀ x 

=> đpcm 

Bài 5. ( sửa thành luôn không dương nhé ;-; )

F = -x2 - 4x - 5

= -( x2 + 4x + 4 ) - 1

= -( x + 2 )2 - 1 ≤ -1 < 0 ∀ x

=> đpcm 

11 tháng 9 2020

Bài 2 

Ta có A = x2 + 2x + 7 = (x2 + 2x + 1) + 6 = (x + 1)2 + 6\(\ge\)6 > 0

Đa thức A vô nghiệm

Bại 3: Ta có M = x2 + 2x + 7 = (x2 + 2x + 1) + 6 = (x + 1)2 + 6\(\ge\)6 > 0 (đpcm)

Bài 4 Ta có A = -x2 + 18x - 81 = -(x2 - 18x + 81) = -(x - 9)2 \(\le0\)(đpcm)

Bài 5 Ta có F = -x2 - 4x - 5 = -(x2 + 4x + 5) = -(x2 + 4x + 4) - 1 = -(x + 2)2 - 1 \(\le\)-1 < 0 (đpcm)

18 tháng 9 2023

\(a,P=5x\left(2-x\right)-\left(x+1\right)\left(x+9\right)\)

\(=10x-5x^2-\left(x^2+x+9x+9\right)\)

\(=10x-5x^2-x^2-x-9x-9\)

\(=\left(10x-x-9x\right)+\left(-5x^2-x^2\right)-9\)

\(=-6x^2-9\)

Ta thấy: \(x^2\ge0\forall x\)

\(\Rightarrow-6x^2\le0\forall x\)

\(\Rightarrow-6x^2-9\le-9< 0\forall x\)

hay \(P\) luôn nhận giá trị âm với mọi giá trị của biến \(x\).

\(b,Q=3x^2+x\left(x-4y\right)-2x\left(6-2y\right)+12x+1\)

\(=3x^2+x^2-4xy-12x+4xy+12x+1\)

\(=\left(3x^2+x^2\right)+\left(-4xy+4xy\right)+\left(-12x+12x\right)+1\)

\(=4x^2+1\)

Ta thấy: \(x^2\ge0\forall x\)

\(\Rightarrow4x^2\ge0\forall x\)

\(\Rightarrow4x^2+1\ge1>0\forall x\)

hay \(Q\) luôn nhận giá trị dương với mọi giá trị của biến \(x\) và \(y\).

#\(Toru\)

26 tháng 9 2016

Ta có: (x+3)(x-11)+2003=x^2-11x+3x-33+2003

                                   =x^2-8x+1970

                                   =x^2-8x+4+1966

                                   =(x^2-8x+4)+1966

                                   =(x+2)^2  +1966

 Vì (x+2)^2 > 0 và 1966>0 => Bthức trên luôn luôn dương.

   OK

26 tháng 9 2016

bài khó wa 

chịu thui 

cố lên

24 tháng 7 2017

Ta có ( x+3 )(x-11 ) +2003= x^2 - 11x + 3x - 33 + 2003

                                      = x^2 - 8x + 1970

                                      = x2 - 8x + 16 + 1954 

                                      = ( x - 4 )^2 + 1954

   Mà ( x - 4 )^2 luôn lớn hơn hoặc bằng 0 => ( x - 4 )^2 + 1954 luôn dương

15 tháng 10 2018

\(-9x^2+12x-15\)

\(=-\left[\left(3x\right)^2-2.3x.2+2^2\right]-11\)

\(=-\left(3x-2\right)^2-11\)

Ta có: \(\left(3x-2\right)^2\ge0\forall x\)

\(\Rightarrow-\left(3x-2\right)^2\le0\forall x\)

\(\Rightarrow-\left(3x-2\right)^2-11\le-11\forall x\)

\(\Rightarrow-\left(3x-2\right)^2-11< 0\forall x\)

\(\Rightarrow-9x^2+12x-15< 0\forall x\)

                                           đpcm

Tham khảo nhé~

28 tháng 12 2021

28 tháng 12 2021

\(=\dfrac{3x\left(-x^2\right)}{3x}+\dfrac{2}{3x}-\dfrac{3x}{3x}=\dfrac{-3x^3+2-3x}{3x}\)

\(=\dfrac{-x^2+2-3x}{1}=-\left(x^2-2+3x\right)\)

vậy bt A luôn......

10 tháng 9 2017

\(9x^2-6xy+2y^2+1\)

\(=\left(3x\right)^2-2\cdot3x\cdot y+y^2+y^2+1\) 

\(=\left(3x+y\right)^2+y^2+1\)  

ta có \(\left(3x+y\right)^2\ge0\forall x,y\)

\(y^2\ge0\forall y\)

\(\Rightarrow\left(3x+y\right)^2+y^2+1>0\forall x,y\)