Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. \(9x^2-6x+2=9x^2-6x+1+1=\left(3x-1\right)^2+1\)
Ta có: \(\left(3x-1\right)^2\ge0\forall x\Rightarrow\left(3x-1\right)^2+1\ge1>0\forall x\)
Vậy ....
b. \(x^2+x+1=x^2+x+\dfrac{1}{4}+\dfrac{3}{4}=\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}\)
Vì \(\left(x+\dfrac{1}{2}\right)^2\ge0\forall x\Rightarrow\left(x+\dfrac{1}{2}\right)^2 +\dfrac{3}{4}>0\forall x\)
Vậy ...
c. \(2x^2+2x+1=x^2+2x+1+x^2=\left(x+1\right)^2+x^2\)
Vì \(\left(x+1\right)^2\ge0\forall x;x^2\ge0\forall x\Rightarrow\left(x+1\right)^2+x^2\ge0\)
Dấu "=" xảy ra khi \(\left\{{}\begin{matrix}\left(x+1\right)^2=0\\x^2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-1\\x=0\end{matrix}\right.\)
Vì x không thể cùng lúc có hai giá trị nên đẳng thức không xảy ra.
\(\Rightarrow\left(x+1\right)^2+x^2>0\forall x\)
Vậy ....
a)\(9x^2-6x+2=\left(3x-1\right)^2+1\)
Với mọi x thì \(\left(3x-1\right)^2>=0\)
=>\(\left(3x-1\right)^2+1>=1>0\)
=>\(9x^2-6x+2\)luôn dương
b)\(x^2+x+1=\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}\)
Với mọi x thì \(\left(x+\dfrac{1}{2}\right)^2>=0\)
=>\(\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}>=\dfrac{3}{4}>0\)
=>....(đpcm)
c)\(2x^2+2x+1=2\left(x+\dfrac{1}{2}\right)^2+\dfrac{1}{2}\)
Với mọi x thì \(2\left(x+\dfrac{1}{2}\right)^2>=0\)
=>\(2\left(x+\dfrac{1}{2}\right)+\dfrac{1}{2}>=\dfrac{1}{2}>0\)
=>\(2x^2+2x+1>0\)(đpcm)
a. \(2x^2-4x+10=x^2-2x+1+x^2-2x+1+8=\left(x-1\right)^2+\left(x-1\right)^2+8=2\left(x-1\right)^2+8\)
Vì \(2\left(x-1\right)^2\ge0\Rightarrow2\left(x-1\right)^2+8\ge8\)
Vậy...
b. \(x^2+x+1=x^2+x+\frac{1}{4}+\frac{3}{4}=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\)
Vì \(\left(x+\frac{1}{2}\right)^2\ge0\Rightarrow\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\)
Vậy..
c. \(2x^2-6x+5=x^2-4x+4+x^2-2x+1=\left(x-2\right)^2+\left(x-1\right)^2\)
Vì \(\hept{\begin{cases}\left(x-2\right)^2\ge0\\\left(x-1\right)^2\ge0\end{cases}}\Rightarrow\left(x-2\right)^2+\left(x-1\right)^2\ge0\)
Vậy...
a) 9x2 - 6x + 2 = (3x)2 - 2.3x.1 + 12 + 1 = (3x - 1)2 + 1 mà\(\left(3x+1\right)^2\ge0\Rightarrow\left(3x+1\right)^2+1\ge1>0\)
b) x2 + x + 1 = x2 + 2.x.\(\frac{1}{2}+\left(\frac{1}{2}\right)^2+\frac{3}{4}=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\)mà\(\left(x+\frac{1}{2}\right)^2\ge0\Rightarrow\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}>0\)
c) 2x2 + 2x + 1 =\(\left(\sqrt{2}x\right)^2+2\sqrt{2}x.\frac{1}{\sqrt{2}}+\left(\frac{1}{\sqrt{2}}\right)^2+\frac{1}{2}=\left(\sqrt{2}x+\frac{1}{\sqrt{2}}\right)^2+\frac{1}{2}\ge\frac{1}{2}>0\)
a) \(9x^2-6x+2=\left(\left(3x\right)^2-2.3x.1+1\right)+1=\left(3x-1\right)^2+1>0\)
b) .\(x^2+x+1=\left(\left(x^2\right)+2.x.\frac{1}{2}+\frac{1}{4}\right)-\frac{1}{4}+1=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}>0\)
c) \(2x^2+2x+1=x^2+\left(x^2+2x+1\right)=x^2+\left(x+1\right)^2>0\)
`a,9x^2-6x+2`
`=9x^2-6x+1+1`
`=(3x-1)^2+1`
Ta có: `(3x-1)^2≥0∀x`
`=>(3x-1)^2+1≥1∀x`
`b,x^2+x+1`
`=x^2+x+1/4+3/4`
`=(x+1/2)^2+3/4`
Ta có: `(x+1/2)^2≥0∀x`
`=>(x+1/2)^2+3/4≥0∀x`
`c,2x^2+2x+1`
`=x^2+x^2+2x+1`
`=x^2+(x+1)^2≥0∀x`
Lại thấy trường hợp `x^2+(x+1)^2=0∀x` không tồn tại nên:
`=>x^2+(x+1)^2>0∀x`
Vậy biểu thức trên luôn luôn có giá tri dương với mọi giá trị của biến.
a) \(x^2-x+1=x^2-\frac{1}{2}.x.2+\frac{1}{4}+\frac{3}{4}=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\)
Vì \(\left(x-\frac{1}{2}\right)^2\ge0\left(\forall x\right)\) và \(\frac{3}{4}>0\)
Nên \(x^2-x+1\) luôn dương với mọi giá trị của x
b) \(x^2+x+2=x^2+2.x.\frac{1}{2}+\frac{1}{4}+\frac{7}{4}=\left(x+\frac{1}{2}\right)^2+\frac{7}{4}\ge\frac{7}{4}>0\)
Nên x2 + x + 2 luôn dương với mọi giá trị của x
c) \(-a^2+a-3=-\left(a^2-a+3\right)=-\left(a^2-2.a.\frac{1}{2}+\frac{1}{4}\right)-\frac{11}{4}\)
\(=-\left(a-\frac{1}{2}\right)^2+\frac{-11}{4}\)
Vì \(\left(a-\frac{1}{2}\right)^2\ge0\left(\forall a\right)\Rightarrow-\left(a-\frac{1}{2}\right)^2< 0\left(\forall a\right)\)
Và \(\frac{-11}{4}< 0\)
Nên -a2 + a - 3 luôn âm với mọi giá trị của a
a) x^2 - x+1
=x^2 - 2.x.1/2 + (1/2)^2-(1/2)^2 +1
=(x-1/2)^2 - 1/4 +1
=(x-1/2)^2 + 3/4
ta thấy ; (x-1/2)^2 lớn hơn hoặc bằng 0 với mọi x thuộc R
(=) (x-1/2)^2 + 3/4 >0 với mọi x thuộc R
hay x^2 -x + 1 luôn dương
b) x^2 + x +2
=x^2 + 2.x.1/2 + ( 1/2)^2 -(1/2)^2 +2
= ( x+1/2)^2 -1/4 +2
= (x+1/2)^2 +7/4
ta thấy : (x + 1/2)^2 lớn hơn hoặc bằng 0 với mọi x thuộc R
(=) (x + 1/2)^2 + 7/4 > 0 với mọi x thuộc R
hay x^2 + x + 2 luôn dương
c)-a^2 + a -3
= -( a^2 -a +3 )
= - (a^2-2a1/2+<1/2>^2 -<1/2>^2 + 3 )
= - ( <a-1/2>^2 -1/4 +3)
= - ( <a-1/2>^2 +11/4)
= -(a-1/2)^2 -11/4
ta thấy : - (a-1/2)^2 nhỏ hơn hoặc bằng 0 với mọi x thuộc R
(=) -(a-1/2)^2 - 11/4 < 0 với mọi x thuộc R
hay -a^2 + a -3 luôn âm
d) xin lỗi mình chưa giải kịp
Bài 1:
\(2x^2+2x+1=2\left(x^2+x+\dfrac{1}{4}\right)+\dfrac{1}{2}=2\left(x+\dfrac{1}{2}\right)^2+\dfrac{1}{2}>0\Rightarrowđpcm\)Bài 2:
\(A=x^2-3x+5=\left(x^2-3x+\dfrac{9}{4}\right)+\dfrac{11}{4}=\left(x-\dfrac{3}{2}\right)^2+\dfrac{11}{4}\)Với mọi giá trị của x ta có:
\(\left(x-\dfrac{3}{2}\right)^2\ge0\Rightarrow\left(x-\dfrac{3}{2}\right)^2+\dfrac{11}{4}\ge\dfrac{11}{4}\)
Vậy GTNN của A là \(\dfrac{11}{4}\)
Để \(A=\dfrac{11}{4}\) thì \(x-\dfrac{3}{2}=0\Rightarrow x=\dfrac{3}{2}\)
b, \(B=\left(2x-1\right)^2+\left(x+2\right)^2=4x^2-4x+1+x^2+4x+4=5x^2+5=5\left(x^2+1\right)\)
Với mọi giá trị của x ta có:
\(x^2\ge0\Rightarrow x^2+1\ge1\Rightarrow5\left(x^2+1\right)\ge5\)
Vậy \(Min_B=5\)
Để B = 5 thì \(x^2=0\Rightarrow x=0\)
Bài 3:
\(A=4-x^2+2x=-\left(x^2-2x+1\right)+5=-\left(x-1\right)^2+5\)
Với mọi giá trị của x ta có:
\(\left(x-1\right)^2\ge0\Rightarrow-\left(x-1\right)^2\le0\Rightarrow-\left(x-1\right)^2+5\le5\)Vậy \(Max_A=5\)
Để A = 5 thì \(x-1=0\Rightarrow x=1\)
b, \(B=4x-x^2=4-\left(4-4x+x^2\right)=4-\left(2-x\right)^2\)
Với mọi giá trị của x ta có :
\(\left(2-x\right)^2\ge0\Rightarrow4-\left(2-x\right)^2\le4\)
Vậy \(Max_B=4\)
Để B = 4 thì \(2-x=0\Rightarrow x=2\)
Bài 1: CMR các biểu thức sau luôn dương với mọi giá trị của biểu thức
\(2x^2+2x+1\)
Ta có: \(2x^2>2x\forall x\) mà \(2x^2\ge0\)
\(\Rightarrow2x^2-2x\ge0\)
Vậy \(2x^2+2x+1\ge1\) (đpcm)
1/
a/ \(x^2+y^2=x^2+y^2+2xy-2xy\)\(=\left(x+y\right)^2-2xy\)
thay vào: \(\left(x+y\right)^2-2xy=a^2-2b\)
b/ \(x^3+y^3=\left(x+y\right)\left(x^2-xy+y^2\right)=\left(x+y\right)\left(x^2+y^2+2xy-xy-2xy\right)\)\(=\left(x+y\right)\left[\left(x+y\right)^2-3xy\right]\)
thay vào: \(=\left(x+y\right)\left[\left(x+y\right)^2-3xy\right]=a\left(a^2-3b\right)\)
c/ \(x^4+y^4=\left(x^2+y^2\right)^2-2x^2y^2=\left[\left(x+y\right)^2-2xy\right]^2-2x^2y^2\)
thay vào: \(\left[\left(x+y\right)^2-2xy\right]^2-2x^2y^2=\left(a^2-2b\right)^2-2b^2\)
a) \(2x^2-4x+10=2\left(x^2-2x+1\right)+8=2\left(x-1\right)^2+8>0\)
b) \(x^2+x+1=x^2+2.x.\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{3}{4}=\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0\)
c) \(2x^2-6x+5=2\left(x^2-3x+\dfrac{9}{4}\right)+1,5=2\left(x-\dfrac{3}{2}\right)^2+1,5>0\)
a)\(9x^2-6x+2=\left(9x^2-6x+1\right)+1=\left(3x-1\right)^2+1\)
Vì \(\left(3x-1\right)^2\ge0\forall x\Rightarrow9x^2-6x+2=\left(3x-1\right)^2+1\ge1>0\forall x\)
=>Biểu thức luôn dương với mọi x
b)\(x^2+x+1=x^2+2.\frac{1}{2}.x+\frac{1}{4}+\frac{3}{4}=\left(1+\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}>0\)
c)\(2x^2+2x+1=\left(2x^2+2x+\frac{1}{2}\right)+\frac{1}{2}=2\left(x^2+x+\frac{1}{4}\right)+\frac{1}{2}=2\left(x+\frac{1}{2}\right)^2+\frac{1}{2}\ge\frac{1}{2}>0\)
cho hỏi công tử bột là j