\(9x^2-6x+2\)

b)

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 5 2017

a)\(9x^2-6x+2=\left(9x^2-6x+1\right)+1=\left(3x-1\right)^2+1\)

Vì \(\left(3x-1\right)^2\ge0\forall x\Rightarrow9x^2-6x+2=\left(3x-1\right)^2+1\ge1>0\forall x\)

=>Biểu thức luôn dương với mọi x

b)\(x^2+x+1=x^2+2.\frac{1}{2}.x+\frac{1}{4}+\frac{3}{4}=\left(1+\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}>0\)

c)\(2x^2+2x+1=\left(2x^2+2x+\frac{1}{2}\right)+\frac{1}{2}=2\left(x^2+x+\frac{1}{4}\right)+\frac{1}{2}=2\left(x+\frac{1}{2}\right)^2+\frac{1}{2}\ge\frac{1}{2}>0\)

28 tháng 5 2017

cho hỏi công tử bột là j

9 tháng 9 2017

a. \(9x^2-6x+2=9x^2-6x+1+1=\left(3x-1\right)^2+1\)

Ta có: \(\left(3x-1\right)^2\ge0\forall x\Rightarrow\left(3x-1\right)^2+1\ge1>0\forall x\)

Vậy ....

b. \(x^2+x+1=x^2+x+\dfrac{1}{4}+\dfrac{3}{4}=\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}\)

\(\left(x+\dfrac{1}{2}\right)^2\ge0\forall x\Rightarrow\left(x+\dfrac{1}{2}\right)^2 +\dfrac{3}{4}>0\forall x\)

Vậy ...

c. \(2x^2+2x+1=x^2+2x+1+x^2=\left(x+1\right)^2+x^2\)

\(\left(x+1\right)^2\ge0\forall x;x^2\ge0\forall x\Rightarrow\left(x+1\right)^2+x^2\ge0\)

Dấu "=" xảy ra khi \(\left\{{}\begin{matrix}\left(x+1\right)^2=0\\x^2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-1\\x=0\end{matrix}\right.\)

Vì x không thể cùng lúc có hai giá trị nên đẳng thức không xảy ra.

\(\Rightarrow\left(x+1\right)^2+x^2>0\forall x\)

Vậy ....

a)\(9x^2-6x+2=\left(3x-1\right)^2+1\)

Với mọi x thì \(\left(3x-1\right)^2>=0\)

=>\(\left(3x-1\right)^2+1>=1>0\)

=>\(9x^2-6x+2\)luôn dương

b)\(x^2+x+1=\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}\)

Với mọi x thì \(\left(x+\dfrac{1}{2}\right)^2>=0\)

=>\(\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}>=\dfrac{3}{4}>0\)

=>....(đpcm)

c)\(2x^2+2x+1=2\left(x+\dfrac{1}{2}\right)^2+\dfrac{1}{2}\)

Với mọi x thì \(2\left(x+\dfrac{1}{2}\right)^2>=0\)

=>\(2\left(x+\dfrac{1}{2}\right)+\dfrac{1}{2}>=\dfrac{1}{2}>0\)

=>\(2x^2+2x+1>0\)(đpcm)

19 tháng 6 2018

a. \(2x^2-4x+10=x^2-2x+1+x^2-2x+1+8=\left(x-1\right)^2+\left(x-1\right)^2+8=2\left(x-1\right)^2+8\)

Vì \(2\left(x-1\right)^2\ge0\Rightarrow2\left(x-1\right)^2+8\ge8\)

Vậy...

b. \(x^2+x+1=x^2+x+\frac{1}{4}+\frac{3}{4}=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\)

Vì \(\left(x+\frac{1}{2}\right)^2\ge0\Rightarrow\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\)

Vậy..

c. \(2x^2-6x+5=x^2-4x+4+x^2-2x+1=\left(x-2\right)^2+\left(x-1\right)^2\)

Vì \(\hept{\begin{cases}\left(x-2\right)^2\ge0\\\left(x-1\right)^2\ge0\end{cases}}\Rightarrow\left(x-2\right)^2+\left(x-1\right)^2\ge0\)

Vậy...

30 tháng 10 2016

a) 9x2 - 6x + 2 = (3x)2 - 2.3x.1 + 12 + 1 = (3x - 1)2 + 1 mà\(\left(3x+1\right)^2\ge0\Rightarrow\left(3x+1\right)^2+1\ge1>0\)

b) x2 + x + 1 = x2 + 2.x.\(\frac{1}{2}+\left(\frac{1}{2}\right)^2+\frac{3}{4}=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\)\(\left(x+\frac{1}{2}\right)^2\ge0\Rightarrow\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}>0\)

c) 2x2 + 2x + 1 =\(\left(\sqrt{2}x\right)^2+2\sqrt{2}x.\frac{1}{\sqrt{2}}+\left(\frac{1}{\sqrt{2}}\right)^2+\frac{1}{2}=\left(\sqrt{2}x+\frac{1}{\sqrt{2}}\right)^2+\frac{1}{2}\ge\frac{1}{2}>0\)

25 tháng 9 2017

a)    \(9x^2-6x+2=\left(\left(3x\right)^2-2.3x.1+1\right)+1=\left(3x-1\right)^2+1>0\)

b)   .\(x^2+x+1=\left(\left(x^2\right)+2.x.\frac{1}{2}+\frac{1}{4}\right)-\frac{1}{4}+1=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}>0\)

c)    \(2x^2+2x+1=x^2+\left(x^2+2x+1\right)=x^2+\left(x+1\right)^2>0\)

26 tháng 7 2020
https://i.imgur.com/AQ6kyrY.jpg
26 tháng 7 2020

`a,9x^2-6x+2`

`=9x^2-6x+1+1`

`=(3x-1)^2+1`

Ta có: `(3x-1)^2≥0∀x`

`=>(3x-1)^2+1≥1∀x`

`b,x^2+x+1`

`=x^2+x+1/4+3/4`

`=(x+1/2)^2+3/4`

Ta có: `(x+1/2)^2≥0∀x`

`=>(x+1/2)^2+3/4≥0∀x`

`c,2x^2+2x+1`

`=x^2+x^2+2x+1`

`=x^2+(x+1)^2≥0∀x`

Lại thấy trường hợp `x^2+(x+1)^2=0∀x` không tồn tại nên:

`=>x^2+(x+1)^2>0∀x`

Vậy biểu thức trên luôn luôn có giá tri dương với mọi giá trị của biến.

15 tháng 8 2018

a) \(x^2-x+1=x^2-\frac{1}{2}.x.2+\frac{1}{4}+\frac{3}{4}=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\)

Vì \(\left(x-\frac{1}{2}\right)^2\ge0\left(\forall x\right)\) và \(\frac{3}{4}>0\)

Nên \(x^2-x+1\) luôn dương với mọi giá trị của x

b) \(x^2+x+2=x^2+2.x.\frac{1}{2}+\frac{1}{4}+\frac{7}{4}=\left(x+\frac{1}{2}\right)^2+\frac{7}{4}\ge\frac{7}{4}>0\)

Nên x2 + x + 2 luôn dương với mọi giá trị của x

c) \(-a^2+a-3=-\left(a^2-a+3\right)=-\left(a^2-2.a.\frac{1}{2}+\frac{1}{4}\right)-\frac{11}{4}\)

                                             \(=-\left(a-\frac{1}{2}\right)^2+\frac{-11}{4}\)

Vì \(\left(a-\frac{1}{2}\right)^2\ge0\left(\forall a\right)\Rightarrow-\left(a-\frac{1}{2}\right)^2< 0\left(\forall a\right)\)

Và \(\frac{-11}{4}< 0\)

Nên -a2 + a - 3 luôn âm với mọi giá trị của a

15 tháng 8 2018

a) x^2 - x+1

=x^2 - 2.x.1/2 + (1/2)^2-(1/2)^2 +1

=(x-1/2)^2 - 1/4 +1

=(x-1/2)^2 + 3/4

ta thấy ; (x-1/2)^2 lớn hơn hoặc bằng 0 với mọi x thuộc R

     (=)   (x-1/2)^2 + 3/4 >0 với mọi x thuộc R

hay x^2 -x + 1 luôn dương

b) x^2 + x +2

=x^2 + 2.x.1/2 + ( 1/2)^2 -(1/2)^2 +2

= ( x+1/2)^2 -1/4 +2

= (x+1/2)^2 +7/4

ta thấy : (x + 1/2)^2 lớn hơn hoặc bằng 0 với mọi x thuộc R

       (=) (x + 1/2)^2  + 7/4 > 0 với mọi x thuộc R

hay x^2 + x + 2 luôn dương

c)-a^2 + a -3 

= -( a^2 -a +3 )

= - (a^2-2a1/2+<1/2>^2 -<1/2>^2 + 3 )

= - ( <a-1/2>^2 -1/4 +3)

= - ( <a-1/2>^2 +11/4) 

= -(a-1/2)^2 -11/4

ta thấy : - (a-1/2)^2 nhỏ hơn hoặc bằng 0 với mọi x thuộc R 

          (=) -(a-1/2)^2 - 11/4 < 0 với mọi x thuộc R

hay -a^2 + a -3 luôn âm

d) xin lỗi mình chưa giải kịp 

12 tháng 7 2017

Bài 1:

\(2x^2+2x+1=2\left(x^2+x+\dfrac{1}{4}\right)+\dfrac{1}{2}=2\left(x+\dfrac{1}{2}\right)^2+\dfrac{1}{2}>0\Rightarrowđpcm\)Bài 2:

\(A=x^2-3x+5=\left(x^2-3x+\dfrac{9}{4}\right)+\dfrac{11}{4}=\left(x-\dfrac{3}{2}\right)^2+\dfrac{11}{4}\)Với mọi giá trị của x ta có:

\(\left(x-\dfrac{3}{2}\right)^2\ge0\Rightarrow\left(x-\dfrac{3}{2}\right)^2+\dfrac{11}{4}\ge\dfrac{11}{4}\)

Vậy GTNN của A là \(\dfrac{11}{4}\)

Để \(A=\dfrac{11}{4}\) thì \(x-\dfrac{3}{2}=0\Rightarrow x=\dfrac{3}{2}\)

b, \(B=\left(2x-1\right)^2+\left(x+2\right)^2=4x^2-4x+1+x^2+4x+4=5x^2+5=5\left(x^2+1\right)\)

Với mọi giá trị của x ta có:

\(x^2\ge0\Rightarrow x^2+1\ge1\Rightarrow5\left(x^2+1\right)\ge5\)

Vậy \(Min_B=5\)

Để B = 5 thì \(x^2=0\Rightarrow x=0\)

Bài 3:

\(A=4-x^2+2x=-\left(x^2-2x+1\right)+5=-\left(x-1\right)^2+5\)

Với mọi giá trị của x ta có:

\(\left(x-1\right)^2\ge0\Rightarrow-\left(x-1\right)^2\le0\Rightarrow-\left(x-1\right)^2+5\le5\)Vậy \(Max_A=5\)

Để A = 5 thì \(x-1=0\Rightarrow x=1\)

b, \(B=4x-x^2=4-\left(4-4x+x^2\right)=4-\left(2-x\right)^2\)

Với mọi giá trị của x ta có :

\(\left(2-x\right)^2\ge0\Rightarrow4-\left(2-x\right)^2\le4\)

Vậy \(Max_B=4\)

Để B = 4 thì \(2-x=0\Rightarrow x=2\)

12 tháng 7 2017

Bài 1: CMR các biểu thức sau luôn dương với mọi giá trị của biểu thức

\(2x^2+2x+1\)

Ta có: \(2x^2>2x\forall x\)\(2x^2\ge0\)

\(\Rightarrow2x^2-2x\ge0\)

Vậy \(2x^2+2x+1\ge1\) (đpcm)

9 tháng 7 2016

chữ bị lỗi .... ~0~

9 tháng 7 2016

1/

a/  \(x^2+y^2=x^2+y^2+2xy-2xy\)\(=\left(x+y\right)^2-2xy\)

thay vào: \(\left(x+y\right)^2-2xy=a^2-2b\)

b/ \(x^3+y^3=\left(x+y\right)\left(x^2-xy+y^2\right)=\left(x+y\right)\left(x^2+y^2+2xy-xy-2xy\right)\)\(=\left(x+y\right)\left[\left(x+y\right)^2-3xy\right]\)

thay vào:  \(=\left(x+y\right)\left[\left(x+y\right)^2-3xy\right]=a\left(a^2-3b\right)\)

c/ \(x^4+y^4=\left(x^2+y^2\right)^2-2x^2y^2=\left[\left(x+y\right)^2-2xy\right]^2-2x^2y^2\)

thay vào: \(\left[\left(x+y\right)^2-2xy\right]^2-2x^2y^2=\left(a^2-2b\right)^2-2b^2\)

20 tháng 6 2018

a) \(2x^2-4x+10=2\left(x^2-2x+1\right)+8=2\left(x-1\right)^2+8>0\)

b) \(x^2+x+1=x^2+2.x.\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{3}{4}=\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0\)

c) \(2x^2-6x+5=2\left(x^2-3x+\dfrac{9}{4}\right)+1,5=2\left(x-\dfrac{3}{2}\right)^2+1,5>0\)