Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(-9x^2+12x-15=-\left(9x^2-12x+4\right)-11=-\left(3x-2\right)^2-11\le11< 0\)
b) \(-2x^2+4x-9=-2\left(x^2-2x+1\right)-7=-2\left(x-1\right)^2-7\le-7< 0\)
c) \(xy-x^2-y^2-1=-\dfrac{1}{2}\left(2x^2+2y^2-2xy+2\right)=-\dfrac{1}{2}\left[\left(x-y\right)^2+x^2+y^2+2\right]< 0\)
a) \(-9x^2+12x-15\)
\(=-9x^2+12x-4-11\)
\(=-\left(9x^2-12x+4\right)-11\)
\(=-\left(3x-2\right)^2-11\)
Có: \(-\left(3x-2\right)^2\ge0\Rightarrow-\left(3x-2\right)^2-11\le-11\)
\(\Rightarrow-\left(3x-2\right)^2-11< 0\)
b) \(-5-\left(x-1\right)\left(x+2\right)\)
\(=-5-\left(x^2+x-2\right)\)
\(=-5-x^2-x+2\)
\(=-3-x^2-x\)
\(=-\left(3+x^2+x\right)\)
Có: \(x^2+x\ge0\Rightarrow3+x^2+x\ge3\)
\(\Rightarrow-\left(3+x^2+x\right)\le-3\)
\(\Rightarrow-\left(3+x^2+x\right)< 0\)
Bài 1
\(A=x^2-6x+15=x^2-2.3.x+9+6=\left(x-3\right)^2+6>0\forall x\)
\(B=4x^2+4x+7=\left(2x\right)^2+2.2.x+1+6=\left(2x+1\right)^2+6>0\forall x\)
Bài 2
\(A=-9x^2+6x-2021=-\left(9x^2-6x+2021\right)=-\left[\left(3x-1\right)^2+2020\right]=-\left(3x-1\right)^2-2020< 0\forall x\)
a: Sửa đề: 1/4x+x^2+2
x^2+1/4x+2
=x^2+2*x*1/8+1/64+127/64
=(x+1/8)^2+127/64>=127/64>0 với mọi x
=>ĐPCM
b: 2x^2+3x+1
=2(x^2+3/2x+1/2)
=2(x^2+2*x*3/4+9/16-1/16)
=2(x+3/4)^2-1/8
Biểu thức này ko thể luôn dương nha bạn
c: 9x^2-12x+5
=9x^2-12x+4+1
=(3x-2)^2+1>=1>0 với mọi x
d: (x+2)^2+(x-2)^2
=x^2+4x+4+x^2-4x+4
=2x^2+8>=8>0 với mọi x
\(-9x^2+12x-15=\left(-11\right)-\left(9x^2-12x+4\right)=\left(-11\right)-\left(3x-2\right)^2\le-11< 0\)
\(-5-\left(x-1\right).\left(x+2\right)=-5-\left(x^2+x-2\right)=-\left(x^2+x+3\right)=-\left(\left(x+\frac{1}{2}\right)^2+\frac{11}{4}\right)\le-\frac{11}{4}< 0\)
\(-9x^2+12x-15\)
\(=-\left[\left(3x\right)^2-2.3x.2+2^2\right]-11\)
\(=-\left(3x-2\right)^2-11\)
Ta có: \(\left(3x-2\right)^2\ge0\forall x\)
\(\Rightarrow-\left(3x-2\right)^2\le0\forall x\)
\(\Rightarrow-\left(3x-2\right)^2-11\le-11\forall x\)
\(\Rightarrow-\left(3x-2\right)^2-11< 0\forall x\)
\(\Rightarrow-9x^2+12x-15< 0\forall x\)
đpcm
Tham khảo nhé~