Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=3x^2-x+20=3\left(x^2-\dfrac{1}{3}x+\dfrac{20}{3}\right)=3\left(x^2-2.\dfrac{1}{6}x+\dfrac{1}{36}+\dfrac{239}{36}\right)\)
\(A=3\left[\left(x+\dfrac{1}{6}\right)^2+\dfrac{239}{36}\right]=3\left(x+\dfrac{1}{6}\right)^2+\dfrac{239}{12}\ge\dfrac{239}{12}\)
\(=>A>0\left(\forall x\right)\)
Ta có:A=3x2-x+20=2(x2-2x+1)+\(\left(x^2+2.\dfrac{3}{2}x+\dfrac{9}{4}\right)+\dfrac{73}{4}\)
=\(2\left(x-1\right)^2+\left(x+\dfrac{3}{2}\right)^2+\dfrac{73}{4}\ge0\)
\(x^4+2x^3-3x^2-4x+4=\left(x^4+2x^3+x^2\right)-4\left(x^2+x\right)+4\)
\(=\left(x^2+x\right)^2-4\left(x^2+x\right)+4=\left(x^2+x-2\right)^2\ge0\)
\(\Rightarrow\)ĐPCM
Bài 1
\(A=x^2-6x+15=x^2-2.3.x+9+6=\left(x-3\right)^2+6>0\forall x\)
\(B=4x^2+4x+7=\left(2x\right)^2+2.2.x+1+6=\left(2x+1\right)^2+6>0\forall x\)
Bài 2
\(A=-9x^2+6x-2021=-\left(9x^2-6x+2021\right)=-\left[\left(3x-1\right)^2+2020\right]=-\left(3x-1\right)^2-2020< 0\forall x\)
-4x2-4x-2=-4(x2+x+1/2)
=-4(x2+2.1/2x+1/4+1/4)
=-4[(x+1/2)2+1/4]
vì (x+1/2)2 +1/4 lớn hơn hoặc = 0 với mọi x nên -4[(x+1/2)2+1/4] bé hơn hoặc = 0 với mọi x hay -4x2-4x-2 luôn âm với mọi x
(1-2x)(x-1)-5
=-2x2+3x-1-5
=-2x2+3x-6
=-2(x2-3/2x+3)
=-2(x-3/4)2-39/8
Vì (x-3/4)2≥0 với mọi x
⇒-2(x-3/4)2≤0
⇒-2(x-3/4)2-39/8<0
Vậy biểu thức (1-2x)(x-1)-5 luôn âm với mọi x
\(-3x^2+x-20=-3\left(x^2-\dfrac{1}{3}x+\dfrac{20}{3}\right)\)
\(=-3\left(x^2-2.\dfrac{1}{6}x+\dfrac{1}{36}+\dfrac{239}{36}\right)=-3\left[\left(x-\dfrac{1}{6}\right)^2+\dfrac{239}{36}\right]\)
\(=-3\left(x-\dfrac{1}{6}\right)^2-\dfrac{239}{12}\le-\dfrac{239}{12}< 0\left(\forall x\right)\)
Ta có: \(-3x^2+x-20\)
\(=-3\left(x^2-\dfrac{1}{3}x+\dfrac{20}{3}\right)\)
\(=-3\left(x^2-2\cdot x\cdot\dfrac{1}{6}+\dfrac{1}{36}\right)-\dfrac{239}{12}\)
\(=-3\left(x-\dfrac{1}{6}\right)^2-\dfrac{239}{12}< 0\forall x\)(đpcm)