Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có : A = 5 + 52 + 53 + ... + 5100
=> 5A = 52 + 53 + 54 + ... + 5101
=> 5A - A = (52 + 53 + 54 + ... + 5101) - (5 + 52 + 53 + ... + 5100 )
=> 4A = 5101 - 5
=> A = \(\frac{5^{501}-5}{4}\)
b) Ta có B = 1 + 42 + 44 + ... + 4300
=> 42.B = 42 + 44 + 46 + ... + 4302 = 16B
Khi đó 16B - B = (42 + 44 + 46 + ... + 4302) - (1 + 42 + 44 + ... + 4300)
=> 15B = 4302 - 1
=> B = \(\frac{4^{302}-1}{15}\)
c) Ta có C = 1 + 32 + 34 + ... + 32020
=> 32C = 32 + 34 + 36 + ... + 32022 = 9C
Khi đó 9C - C = (32 + 34 + 36 + ... + 32022) - (1 + 32 + 34 + ... + 32020)
=> 8C = 32022 - 1
=> C = \(\frac{3^{2022}-1}{8}\)
Dễ mà
Ta có: \(4^{n+3}+4^{n+2}-4^{n+1}-4^n\)
\(=4^n\cdot4^3+4^n\cdot4^2-4^n\cdot4-4^n\)
\(=4^n\left(4^3+4^2-4-1\right)=4^n\cdot75\)
Biến đổi tí xíu ta có:
\(4^n\cdot75=4^{n-1}\cdot4\cdot75=\left(4^{n-1}\cdot300\right)⋮300\)
\(B=4^1+4^2+4^3+...+4^{300}\)
\(B=\left(4+4^2\right)+\left(4^3+4^4\right)+...+\left(4^{299}+4^{300}\right)\)
\(B=4\left(1+4\right)+4^3\left(1+4\right)+...+4^{299}\left(1+4\right)\)
\(B=4.5+4^3.5+...+4^{299}.5\)
\(B=5\left(4+4^3+...+4^{299}\right)\)
Có : \(B=5\left(4+4^3+...+4^{299}\right)⋮5\)
\(\Rightarrow B⋮5\)
Ta có B= (41+42)+(43+44)+.....+(4299+4300)
B= 41(1+4)+43(1+4)+...+4299(1+4)
B= 5.(41+43+...+4299)
vì 5 chia hết cho 5 => B chia hết cho 5
a)5.4.9-6^2=180-36=144
b)15:3-2^2=5-4=1
c)5.3^5:3^3-8.5=5.3^2-40=5.9-40=45-40=5
a)mk ko bt
b)15 * 35 / (35 / 34 ) - 23 *5
=15 / 3 - 4
=5 - 4
=1
c) 5 * 35 / (38 / 35 ) - 23 * 5
=5 * 35 / 27 - 23 * 5
=1215 / 27 - 40
=45 - 40
=5
d) 4* [(3 + 37 + 34)*10 + 97]-300
=4*[(3+2187+81)*10+97]-300
=4*[(2190+81)*10+97]-300
=4*[2271*10+97]-300
=4*[22710+97]-300
=4*22807-300
=9128-300
=90928
\(3,1+5^2+5^4+...+5^{26}\)
\(=\left(1+5^2\right)+\left(5^4+5^6\right)+...+\left(5^{24}+5^{26}\right)\)
\(=\left(1+5^2\right)+5^4\left(1+5^2\right)+...+5^{24}\left(1+5^2\right)\)
\(=26+5^4.26+...+5^{24}.26\)
\(=26\left(5^4+...+5^{24}\right)\)
Vì \(26⋮26\)
\(\Rightarrow26\left(5^4+...+5^{24}\right)⋮26\)
\(\Rightarrow1+5^2+5^4+...+5^{26}⋮26\)
\(4,1+2^2+2^4+...+2^{100}\)
\(=\left(1+2^2+2^4\right)+...+\left(2^{98}+2^{99}+2^{100}\right)\)
\(=\left(1+2^2+2^4\right)+....+2^{98}\left(1+2^2+2^4\right)\)
\(=21+2^6.21...+2^{98}.21\)
\(=21\left(2^6+...+2^{98}\right)\)
Có : \(21\left(2^6+...+2^{98}\right)⋮21\)
\(\Rightarrow1+2^2+2^4+...+2^{100}⋮21\)
B = (4^1 + 4^2) + (4^3 +4^4) + ... + (4^299 + 4^300)
= 4(1+4)+4^3(1+4)+...+4^299(1+4)
= 4.5+4^3 .5 +...+4^299. 5
= 5.(4+4^3+...+4^299) chia hết cho 5
\(B=4^1+4^2+4^3+4^3+...+4^{300}\\=(4+4^2)+(4^3+4^4)+(4^5+4^6)+...+(4^{299}+4^{300})\\=4\cdot(1+4)+4^3\cdot(1+4)+4^5\cdot(1+4)+...+4^{299}\cdot(1+4)\\=4\cdot5+4^3\cdot5+4^5\cdot5+...+4^{299}\cdot5\\=5\cdot(4+4^3+4^5+...+4^{299})\)
Vì \(5\cdot(4+4^3+4^5+...+4^{299}) \vdots 5\)
nên \(B \vdots 5\)