Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
+) \(Q=2x^2-6x+x^2+6x-12\)
\(=\left(2x^2+x^2\right)+\left(-6x+6x\right)-12\)
\(=3x^2-12\)
\(Cho\) \(Q=0\) \(\Rightarrow3x^2-12=0\)
\(\Rightarrow3x^2=12\)
\(\Rightarrow x^2=4\)
\(\Rightarrow x=2\)\(hay\)\(x=-2\)
VẬY ........... ( NẾU SAI THÌ THÔI NHÉ >-< )
\(Q=2x^2-6x+x^2+6x-12\)
\(Q=\left(2x^2+x^2\right)+\left(-6x+6x\right)-12\)
\(Q=3x^2-12\)
\(\Leftrightarrow3x^2=0+12\)
\(\Leftrightarrow x^2=12:3\)
\(\Leftrightarrow x^2=4=2^2\Rightarrow x=2\)
Vậy với \(x=2\)thì \(Q=0\)
Các bạn nữ (xinh) k và kb làm người yêu mình nha !!!!!!!!!!!!!!!
a)\(x^2+6x+5=0\)
=>\(x^2+x+5x+5=0\)
=>\(x\left(x+1\right)+5\left(x+1\right)=0\)
=>\(\left(x+1\right)\left(x+5\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x+1=0\\x+5=0\end{cases}\Rightarrow\orbr{\begin{cases}x=-1\\x=-5\end{cases}}}\)
Vậy x=-1 hoặc x=-5
b)\(2x^2+6x+4=0\)
=>\(2x^2+2x+4x+4=0\)
=>\(2x\left(x+1\right)+4\left(x+1\right)=0\)
=>\(\left(x+1\right)\left(2x+4\right)=0\)
=>\(\left(x+1\right)2\left(x+2\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x+1=0\\x+2=0\end{cases}\Rightarrow\orbr{\begin{cases}x=-1\\x=-2\end{cases}}}\)
Vậy x=-1 hoặc x=-2
Bài 1:
a, \(x^2-6x+10=x^2-3x-3x+9+1\)
\(=x.\left(x-3\right)-3.\left(x-3\right)+1=\left(x-3\right)^2+1\)
Với mọi giá trị của \(x\in R\) ta có:
\(\left(x-3\right)^2\ge0\Rightarrow\left(x-3\right)^2+1\ge1>0\)
Vậy................... (đpcm)
b, \(4x-x^2-5=-\left(x^2-4x+5\right)\)
\(=-\left(x^2-2x-2x+4+1\right)\)
\(=-\left[x.\left(x-2\right)-2.\left(x-2\right)+1\right]\)
\(=-\left[\left(x-2\right)^2+1\right]\)
Với mọi giá trị của \(x\in R\) ta có:
\(\left(x-2\right)^2\ge0\Rightarrow\left(x-2\right)^2+1\ge1\)
\(\Rightarrow-\left[\left(x-2\right)^2+1\right]\le-1< 0\)
Vậy............... (đpcm)
Chúc bạn học tốt!!!
Bài 2:
a, \(P=x^2-2x+5\)
\(P=x^2-x-x+1+4=\left(x-1\right)^2+4\)
Với mọi giá trị của \(x\in R\)ta có:
\(\left(x-1\right)^2\ge0\Rightarrow\left(x-1\right)^2+4\ge4\)
Hay \(P\ge4\) với mọi giá trị của \(x\in R\).
Để \(P=4\) thì \(\left(x-1\right)^2+4=4\)
\(\Rightarrow x=1\)
Vậy........
b, Xem lại đề.
c, \(M=x^2+y^2-x+6y+10\)
\(M=x^2-\dfrac{1}{2}x-\dfrac{1}{2}x+\dfrac{1}{4}+y^2+3y+3y+9+\dfrac{3}{4}\)
\(M=\left(x-\dfrac{1}{2}\right)^2+\left(y+3\right)^2+\dfrac{3}{4}\)
Với mọi giá trị của \(x;y\in R\)ta có:
\(\left(x-\dfrac{1}{2}\right)^2\ge0;\left(y+3\right)^2\ge0\)
\(\Rightarrow\left(x-\dfrac{1}{2}\right)^2+\left(y+3\right)^2\ge0\)
\(\Rightarrow\left(x-\dfrac{1}{2}\right)^2+\left(y+3\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\)
Hay \(M\ge\dfrac{3}{4}\) với mọi giá trị của \(x;y\in R\).
Để \(M=\dfrac{3}{4}\) thì \(\left(x-\dfrac{1}{2}\right)^2+\left(y+3\right)^2+\dfrac{3}{4}=\dfrac{3}{4}\)
\(\Rightarrow\left\{{}\begin{matrix}\left(x-\dfrac{1}{2}\right)^2=0\\\left(y+3\right)^2=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{1}{2}\\y=-3\end{matrix}\right.\)
Vậy............
Chúc bạn học tốt!!!
Bài 1 :
a) \(x^2-6x+10\)
\(=x^2-6x+9+1\)
\(=\left(x-3\right)^2+1>0\) với mọi \(x\) (vì \(\left(x-3\right)^2\ge0\) )
\(\rightarrowđpcm\)
b) \(4x-x^2-5\)
\(=-x^2+4x-4-1\)
\(=-\left(x^2-4x+4\right)-1\)
\(=-\left(x-2\right)^2-1< 1\) (vì \(-\left(x-2\right)^2< 0\) với mọi x)
\(\rightarrowđpcm\)
Bài 2:
a, \(P=x^2-2x+5=x^2-2x+1+4=\left(x-1\right)^2+4\)
Ta có: \(P=\left(x-1\right)^2+4\ge4\)
Dấu " = " khi \(\left(x-1\right)^2=0\Leftrightarrow x=1\)
Vậy \(MIN_P=4\) khi x = 1
c, \(M=x^2+y^2-x+6y+10\)
\(=\left(x^2-\dfrac{1}{2}.x.2+\dfrac{1}{4}\right)+\left(y^2+6y+9\right)+\dfrac{3}{4}\)
\(=\left(x-\dfrac{1}{2}\right)^2+\left(y+3\right)^2+\dfrac{3}{4}\)
Ta có: \(\left\{{}\begin{matrix}\left(x-\dfrac{1}{2}\right)^2\ge0\\\left(y+3\right)^2\ge0\end{matrix}\right.\Leftrightarrow\left(x-\dfrac{1}{2}\right)^2+\left(y+3\right)^2\ge0\)
\(\Leftrightarrow M=\left(x-\dfrac{1}{2}\right)^2+\left(y+3\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\)
Dấu " = " khi \(\left\{{}\begin{matrix}\left(x-\dfrac{1}{2}\right)^2=0\\\left(y+3\right)^2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{1}{2}\\y=-3\end{matrix}\right.\)
Vậy \(MIN_M=\dfrac{3}{4}\) khi \(x=\dfrac{1}{2},y=-3\)
a) Đặt A = x2 + 6x + 25 = x2 + 6x + 9 + 16 = (x + 3)2 + 16 \(\ge16\)
Dấu "=" xảy ra khi x + 3 = 0
\(\Rightarrow x=-3\)
Vậy Min A = 16 khi x = -3
b) Đặt B = x2 - 4x + 10 = x2 - 4x + 4 + 6 = (x - 2)2 + 6 \(\ge6\)
Dấu "=" xảy ra khi x - 2 = 0
\(\Rightarrow\)x = 2
Vậy Min B = 6 khi x = 2
c) Đặt C = x2 + y2 - 2x + 8y - 20
= (x2 - 2x + 1) + (y2 + 8y + 16) - 37
= (x - 1)2 + (y + 4)2 - 37 \(\ge-37\)
Dấu "=" xảy ra khi \(\hept{\begin{cases}x-1=0\\y+4=0\end{cases}}\Rightarrow\hept{\begin{cases}x=1\\y=-4\end{cases}}\)
Vậy Min C = -37 khi x = 1 ; y = - 4
A = x2 + 4x + 9
= ( x2 + 4x + 4 ) + 5
= ( x + 2 )2 + 5 ≥ 5 ∀ x
Đẳng thức xảy ra <=> x + 2 = 0 => x = -2
=> MinA = 5 <=> x = -2
B = x2 + 6x + 12
= ( x2 + 6x + 9 ) + 3
= ( x + 3 )2 + 3 ≥ 3 ∀ x
Đẳng thức xảy ra <=> x + 3 = 0 => x = -3
=> MinB = 3 <=> x = -3
C = x2 + 3x + 6
= ( x2 + 3x + 9/4 ) + 15/4
= ( x + 3/2 )2 + 15/4 ≥ 15/4 ∀ x
Đẳng thức xảy ra <=> x + 3/2 = 0 => x = -3/2
=> MinC = 15/4 <=> x = -3/2
D = x2 + 5x + 10
= ( x2 + 5x + 25/4 ) + 15/4
= ( x + 5/2 )2 + 15/4 ≥ 15/4 ∀ x
Đẳng thức xảy ra <=> x + 5/2 = 0 => x = -5/2
=> MinD = 15/4 <=> x = -5/2
E = 2x2 + 7x + 5
= 2( x2 + 7/2x + 49/16 ) - 9/8
= 2( x + 7/4 )2 - 9/8 ≥ -9/8 ∀ x
Đẳng thức xảy ra <=> x + 7/4 = 0 => x = -7/4
=> MinE = -9/8 <=> x = -7/4
F = 3x2 + 8x + 9
= 3( x2 + 8/3x + 16/9 ) + 11/3
= 3( x + 4/3 )2 + 11/3 ≥ 11/3 ∀ x
Đẳng thức xảy ra <=> x + 4/3 = 0 => x = -4/3
=> MinF = 11/3 <=> x = -4/3
\(B=2x^2-6x+x^2+6x-12\)
\(\Rightarrow B=\left(2x^2+x^2\right)+\left(-6x+6x\right)-12\)
\(\Rightarrow B=3x^2-12\)
\(-\text{ Để B nhận giá trị bằng 0 thì }3x^2-12=0\)
\(\Rightarrow3x^2=12\)
\(\Rightarrow x^2=4\)
\(\Rightarrow x^2=\left(\pm2\right)^2\)
\(\Rightarrow x=\pm2\)
Vậy...