Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A = (n + 2015)(n + 2016) + n2 + n
= (n + 2015)(n + 2015 + 1) + n(n + 1)
Tích 2 số tự nhiên liên tiếp luôn chia hết cho 2
=> (n + 2015)(n + 2015 + 1) chia hết cho 2
n(n + 1) chia hết cho 2
=> (n + 2015)(n + 2015 + 1) + n(n + 1) chia hết cho 2
=> A chia hết cho 2 với mọi n \(\in\) N (đpcm)
xét mẫu(chỗ 1/2014 sửa lại thành 2/2014)
=(1/2015+1)+(2/2014+1)+...+(2013/3+1)+(2014/2+1)+(2015/1-2014)
=2016/2015+2016/2014+...+2016/3+2016/2+1
=2016.(1/2016+1/2015+...+1/4+1/3+1/2)
=> A= 1/2016
mún dễ hỉu hơn hãy gửi tin nhắn cho mik
\(S=\frac{1}{4}+\frac{2}{4^2}+\frac{3}{4^3}+\frac{4}{4^4}+....+\frac{2014}{4^{2014}}\)
\(4S=1+\frac{2}{4}+\frac{3}{4^2}+\frac{4}{4^3}+...+\frac{2014}{4^{2013}}\)
\(4S-S=\left(1+\frac{2}{4}+\frac{3}{4^2}+\frac{4}{4^3}+...+\frac{2014}{4^{2013}}\right)-\left(\frac{1}{4}+\frac{2}{4^2}+\frac{3}{4^3}+\frac{4}{4^4}+...+\frac{2014}{4^{2014}}\right)\)
\(3S=1+\frac{1}{4}+\frac{1}{4^2}+\frac{1}{4^3}+...+\frac{1}{4^{2013}}-\frac{2014}{4^{2014}}\)
\(12S=4+1+\frac{1}{4}+\frac{1}{4^2}+...+\frac{1}{4^{2012}}-\frac{2014}{4^{2013}}\)
\(12S-3S=\left(4+1+\frac{1}{4}+\frac{1}{4^2}+...+\frac{1}{4^{2012}}-\frac{2014}{4^{2013}}\right)-\left(1+\frac{1}{4}+\frac{1}{4^2}+\frac{1}{4^3}+...+\frac{1}{4^{2013}}-\frac{2014}{4^{2014}}\right)\)
\(9S=4-\frac{2014}{4^{2013}}-\frac{1}{4^{2013}}+\frac{2014}{4^{2014}}\)
\(9S=4-\frac{4028}{4^{2014}}-\frac{4}{4^{2014}}+\frac{2014}{4^{2014}}\)
\(9S=4-\frac{2010}{4^{2014}}< 4\)
\(\Rightarrow9S< 4\)
\(\Rightarrow S< \frac{4}{9}< 1\)(đpcm)
Ta có :
\(S=\frac{1}{4}+\frac{2}{4^2}+\frac{3}{4^3}+...+\frac{2014}{4^{2014}}\)( 1 )
\(4S=1+\frac{2}{4}+\frac{3}{4^2}+...+\frac{2014}{4^{2013}}\)( 2 )
Lấy ( 2 ) - ( 1 ) ta được :
\(3S=1+\frac{1}{4}+\frac{1}{4^2}+...+\frac{1}{4^{2013}}-\frac{2014}{4^{2014}}\)
gọi \(B=1+\frac{1}{4}+\frac{1}{4^2}+...+\frac{1}{4^{2013}}\)( 3 )
\(4B=4+1+\frac{1}{4}+...+\frac{1}{4^{2012}}\) ( 4 )
Lấy ( 4 ) - ( 3 ) ta được :
\(3B=4-\frac{1}{4^{2013}}\)
\(\Rightarrow B=\frac{4-\frac{1}{4^{2013}}}{3}=\frac{4}{3}-\frac{1}{4^{2013}.3}\)
\(\Rightarrow3S=\frac{4}{3}-\frac{1}{4^{2013}.3}-\frac{2014}{4^{2014}}\)
\(\Rightarrow S=\frac{\frac{4}{3}-\frac{1}{4^{2013}.3}-\frac{2014}{4^{2014}}}{3}=\frac{4}{9}-\frac{1}{4^{2013}.9}-\frac{2014}{4^{2014}.3}< \frac{4}{9}< 1\)
vậy \(S< 1\)
\(A=\frac{1+2+3+..+2015}{2014^2}=\frac{2015.2016:2}{4056196}=\frac{2031120}{4056196}\)
VÌ 2031120 ko chia hết cho 4056196 => A ko là stn
\(A=\frac{1+2+...+2015}{2014^2}=\frac{\left(2015+1\right).\left[\left(2015-1\right)+1\right]:2}{2014^2}=\frac{2031120}{4056196}=0,500....\) không phải là số tự nhiên.