\(A=\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}\)  không phải...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 4 2019

bạn ơi bài này có trong bùi văn tuyên

8 tháng 4 2019

\(A=\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+....+\frac{1}{100}< 1\)

\(A=\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+....+\frac{1}{100}< \frac{1}{1.2}+\frac{1}{2.3}+....+\frac{1}{99.100}\)

\(A< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+.....+\frac{1}{99}-\frac{1}{100}\)

\(A< 1-\frac{1}{100}\)

\(A< \frac{99}{100}< 1\)

\(\Rightarrow A=\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+....+\frac{1}{99}+\frac{1}{100}\text{ ko phải là 1 số tự nhiên ( đpcm )}\)

6 tháng 4 2019

\(P=\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2019^2}< 1+\frac{1}{2^2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2018.2019}\)

\(P< 1+\frac{1}{4}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2018}-\frac{1}{2019}=\frac{7}{4}-\frac{1}{2019}< \frac{7}{4}\)

2 tháng 11 2019

Ai trả lời được k đúng luôn.

đặt \(A=\frac{1}{3}-\frac{2}{3^2}+\frac{3}{3^3}-\frac{4}{3^4}+...+\frac{99}{3^{99}}-\frac{100}{3^{100}}\)

\(\Rightarrow3A=1-\frac{2}{3}+\frac{3}{3^2}-\frac{4}{3^3}+...+\frac{99}{3^{98}}-\frac{100}{3^{99}}\)

\(\Rightarrow A+3A=\left(\frac{1}{3}-\frac{2}{3^2}+\frac{3}{3^3}-\frac{4}{3^4}+...+\frac{99}{3^{99}}-\frac{100}{3^{100}}\right)+\left(1-\frac{2}{3}+\frac{3}{3^2}-\frac{4}{3^3}+...+\frac{99}{3^{98}}-\frac{100}{3^{99}}\right)\)

\(\Rightarrow4A=1-\frac{1}{3}+\frac{1}{3^2}-\frac{1}{3^3}+...+\frac{1}{3^{98}}-\frac{1}{3^{99}}-\frac{100}{3^{100}}\)<\(B=1-\frac{1}{3}+\frac{1}{3^2}-\frac{1}{3^3}+...+\frac{1}{3^{98}}-\frac{1}{3^{99}}\)

\(\Rightarrow3B=3-1+\frac{1}{3}-\frac{1}{3^2}+...+\frac{1}{3^{97}}-\frac{1}{3^{98}}\)

\(\Rightarrow B+3B=\left(1-\frac{1}{3}+\frac{1}{3^2}-\frac{1}{3^3}+...+\frac{1}{3^{98}}-\frac{1}{3^{99}}\right)+\left(3-1+\frac{1}{3}-\frac{1}{3^2}+...+\frac{1}{3^{97}}-\frac{1}{3^{98}}\right)\)

\(\Rightarrow4B=3-\frac{1}{3^{98}}<3\)

\(\Rightarrow B<\frac{3}{4}\Rightarrow4A<\frac{3}{4}\Rightarrow A<\frac{3}{16}\)

\(\RightarrowĐPCM\)

 

12 tháng 5 2018

lam ngan hon nua di

3 tháng 6 2019

HÈ RỒI ÍT  NGƯỜI LÀM LẮM

3 tháng 6 2019

VỚI LẠI LÀ KO BIẾT ĐANG HỌC LỚP 5 LÊN LỚP 6

2 tháng 12 2018

a) Ta có 

\(A=\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^7}\)

\(2A=1+\frac{1}{2}+...+\frac{1}{2^6}\)

\(2A-A=\left(1+\frac{1}{2}+...+\frac{1}{2^6}\right)-\left(\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^7}\right)\)

\(A=1-\frac{1}{2^7}\)

Do \(1-\frac{1}{2^7}< 1\Rightarrow A< 1\left(đpcm\right)\)

19 tháng 5 2019

\(A=\frac{1}{2}.\frac{3}{4}.\frac{5}{6}...\frac{99}{100}\)

\(\Rightarrow A>\frac{1}{2}.\frac{2}{3}.\frac{4}{5}...\frac{98}{99}\)

\(\Rightarrow A^2>\frac{1}{2}.\frac{2}{3}.\frac{3}{4}.\frac{4}{5}...\frac{98}{99}.\frac{99}{100}\)

\(\Rightarrow A^2>\frac{1}{100}=\frac{1}{10^2}\)

Vậy \(A>\frac{1}{10}\)

19 tháng 5 2019

\(A=\frac{1}{2}.\frac{3}{4}.\frac{5}{6}...\frac{9999}{10000}\)

\(\Rightarrow A>\frac{1}{2}.\frac{2}{3}.\frac{4}{5}...\frac{9998}{9999}\)

\(\Rightarrow A^2>\frac{1}{2}.\frac{2}{3}.\frac{3}{4}.\frac{4}{5}...\frac{9998}{9999}.\frac{9999}{10000}\)

\(\Rightarrow A^2>\frac{1}{10000}=\frac{1}{100^2}\)

\(VayA>\frac{1}{100}=B\)

1 tháng 11 2019

Ta có:\(\frac{2748}{1}+\frac{2747}{2}+\frac{2746}{3}+...+\frac{1}{2748}\)

\(=\frac{2747}{2}+1+\frac{2746}{3}+1+...+\frac{1}{2748}+1+1\)

\(=\frac{2749}{2}+\frac{2749}{3}+...+\frac{2749}{2748}+\frac{2749}{2749}\)

Tổng dãy trên là 1 phân số

16 tháng 8 2020

a, \(\frac{64}{2^n}=16\Leftrightarrow\frac{64}{2^n}=\frac{64}{4}\Leftrightarrow2^n=4\Leftrightarrow n=2\)

b, \(\left(\frac{1}{3}\right)^{2n-1}=\left(\frac{1}{3}\right)^3\Leftrightarrow2n-1=3\Leftrightarrow n=2\)

16 tháng 8 2020

a)\(\frac{64}{2^n}=16\Leftrightarrow2^n.16=64\Leftrightarrow2^n=4\Leftrightarrow2^n=2^2\Leftrightarrow n=2\)

b)\(\left(\frac{1}{3}\right)^{2n-1}=\frac{1}{27}\)

\(\Leftrightarrow\left(\frac{1}{3}\right)^{2n-1}=\left(\frac{1}{3}\right)^3\)

\(\Leftrightarrow2n-1=3\Leftrightarrow2n=4\Leftrightarrow n=2\)