\(a^b=b^c=c^a\Leftrightarrow a=b=c\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 3 2015

tớ bảo nó có công thức rồi cần gì cm

 

25 tháng 3 2020

ĐCM vãi cả Please sigh

\(a^2+ab+b^2=c^2+cd+d^2\)

\(\Leftrightarrow\left(a+b\right)^2-ab=\left(c+d\right)^2-cd\)

\(\Leftrightarrow\left(a+b\right)^2-\left(c+d\right)^2=ab-cd\)

\(\Leftrightarrow\left(a+b-c-d\right)\left(a+b+c+d\right)=ab-cd\)

Giả sử a+b+c+d là số nguyên tố

Đặt \(a+b+c+d=p\Rightarrow a+b+c\equiv-d\left(modp\right)\)

Mặt khác:

\(ab-cd\equiv0\left(modp\right)\Rightarrow ab+c\left(a+b+c\right)\equiv0\left(modp\right)\Rightarrow\left(a+c\right)\left(b+c\right)\equiv0\left(modp\right)\)

\(\Rightarrow a+c\equiv b+c\equiv0\left(modp\right)\) ( vô lý nha )

Vậy a+b+c+d là hợp số,nhớ trước có sol khá ngắn mà quên mất tiêu

Ta có \(a^b=b^c=c^a\left(1\right)\)

Giả sử \(a>b\left(2\right)\)

Thì từ \(\left(1\right)\left(2\right)\Rightarrow b< c;c>a;a< b\)(mâu thuẫn)

Chứng minh tương tự ta được điều \(a< b\)là sai do đó \(a=b\)

Do đó \(a=b=c\)

Tự tính tiếp...

Giải thích phần suy ra từ (1)(2)

Như bạn biết nếu hai lũy thừa bằng nhau mà lũy thừa nào có cơ số cao hơn thì lũy thừa ấy có số mũ thấp hơn lũy thừa còn lại 

VD:2^4=4^2.4^2 có cơ số là 4>2 nên số mũ của nó bé hơn 

11 tháng 2 2017

a) Ta có: (10a + b)+8(3a + 2b)=34a+17b chia hết cho 17.

Mặt khác: 3a+2b chia hết cho 17 => 8(3a+2b) chia hết cho 17, từ đó 10a + b chia hết cho 17.

Ngược lại, do 10a + b chia hết cho 17 => 8(3a + 2b) chia hết cho 17 mà (8; 17)= 1 => 3a+2b chia hết cho 17.

b) Tương tự, lấy (x + 7y) + 5(6x + 11y)

c) Cũng tương tự, lấy (x + 10y) + 3(4x +y)

Nhớ tíck mình nha! :)

11 tháng 2 2016

bổ sung điều kiện: a,b,c khác 0

từ \(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}\Rightarrow b^2=ca;c^2=ab;a^2=bc\) (nhân chéo)

mà a,b,c khác 0

=>b3=b.ca;c3=c.ab;a3=a.bc

=>b3=c3=a3(=abc)

hay a=b=c(đpcm)

 

11 tháng 2 2016

 a/b = b/c= c/a = a+b+c / a+b+ c = 1 
vậy nên a= b=c 

PS : áp dụng công thức a/b = b/c = a+b/b+c