K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 6 2016

dùng bất đẳng thức 

8 tháng 6 2016

a)Ta có: (a+b)2=a2+2ab+b2=a2-2ab+4ab+b2=(a2-2ab+b2)+4ab=(a-b)2+4ab

=>(a+b)2=(a-b)2+4ab

b)Ta có: (a-b)2=a2-2ab+b2=a2+2ab-4ab+b2=(a2+2ab+b2)-4ab=(a+b)2-4ab

=>(a-b)2=(a+b)2-4ab

12 tháng 7 2017

\(\left(a+b\right)^2=a^2+b^2+2ab=a^2+b^2-2ab+4ab=\left(a-b\right)^2-4ab\)

\(\left(a-b\right)^2=a^2+b^2-2ab=a^2+b^2+2ab-4ab=\left(a-b\right)^2-4ab\)

\(\left(a-b\right)^2=\left(a+b\right)^2-4ab\Rightarrow\left(a-b\right)^2=7^2-4\cdot12=49-48=1\)

\(\left(a+b\right)^2=\left(a-b\right)^2-4ab\Rightarrow\left(a+b\right)^2=20^2-4\cdot3=388\)

5 tháng 10 2019

Chúc bạn học tốt!

5 tháng 10 2019

Biến đổi vế phải:

undefinedundefinedundefined

12 tháng 6 2018

a, \(a^2+4ab+3b^2-2b-1=\left(a^2+4ab+4b^2\right)-\left(b^2+2b+1\right)=\left(a+2b\right)^2-\left(b+1\right)^2\)

                                                             \(=\left(a+2b-b-1\right)\left(a+2b+b+1\right)=\left(a+b-1\right)\left(a+3b+1\right)\)

b,\(a^2-2ab-2b-1=\left(a^2-2ab+b^2\right)-\left(b^2+2b+1\right)\)

                                             \(=\left(a-b\right)^2-\left(b+1\right)^2\)

                                             \(=\left(a-b-b-1\right)\left(a-b+b+1\right)\)   

                                              \(=\left(a-2b-1\right)\left(a+1\right)\)

 TK MINK NHA!

12 tháng 6 2018

a2 - 2ab - 2b - 1 

= a- 2ab + b2 - b2 - 2b - 1

=( a - b )2 - ( b - 1 )2

= ( a - b - b + 1 ) ( a - b + b - 1 )

=  ( a - 2b + 1 ) ( a - 1 )

9 tháng 9 2018

Ta có: 3a2 + b2 = 4ab

<=> 3a2 + b2 - 4ab = 0

<=> a2 + b2 - 2ab + 2a2 - 2ab = 0

<=> (a - b)(3a - b) = 0 <=> a = b/3 (a - b = 0 loại vì a = b)

=> B = \(\dfrac{a-b}{a+b}\)= \(\dfrac{\dfrac{1}{3}b-b}{\dfrac{1}{3}b+b}\)= \(-\dfrac{2}{3}b:\dfrac{4}{3}b\) = \(-\dfrac{1}{2}\).

Bài 2:

\(\left(a-b\right)^2=\left(a+b\right)^2-4ab=10^2-4\cdot21=16\)