Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(a+b\right)^2=a^2+b^2+2ab=a^2+b^2-2ab+4ab=\left(a-b\right)^2-4ab\)
\(\left(a-b\right)^2=a^2+b^2-2ab=a^2+b^2+2ab-4ab=\left(a-b\right)^2-4ab\)
\(\left(a-b\right)^2=\left(a+b\right)^2-4ab\Rightarrow\left(a-b\right)^2=7^2-4\cdot12=49-48=1\)
\(\left(a+b\right)^2=\left(a-b\right)^2-4ab\Rightarrow\left(a+b\right)^2=20^2-4\cdot3=388\)
a, \(a^2+4ab+3b^2-2b-1=\left(a^2+4ab+4b^2\right)-\left(b^2+2b+1\right)=\left(a+2b\right)^2-\left(b+1\right)^2\)
\(=\left(a+2b-b-1\right)\left(a+2b+b+1\right)=\left(a+b-1\right)\left(a+3b+1\right)\)
b,\(a^2-2ab-2b-1=\left(a^2-2ab+b^2\right)-\left(b^2+2b+1\right)\)
\(=\left(a-b\right)^2-\left(b+1\right)^2\)
\(=\left(a-b-b-1\right)\left(a-b+b+1\right)\)
\(=\left(a-2b-1\right)\left(a+1\right)\)
TK MINK NHA!
a2 - 2ab - 2b - 1
= a2 - 2ab + b2 - b2 - 2b - 1
=( a - b )2 - ( b - 1 )2
= ( a - b - b + 1 ) ( a - b + b - 1 )
= ( a - 2b + 1 ) ( a - 1 )
Ta có: 3a2 + b2 = 4ab
<=> 3a2 + b2 - 4ab = 0
<=> a2 + b2 - 2ab + 2a2 - 2ab = 0
<=> (a - b)(3a - b) = 0 <=> a = b/3 (a - b = 0 loại vì a = b)
=> B = \(\dfrac{a-b}{a+b}\)= \(\dfrac{\dfrac{1}{3}b-b}{\dfrac{1}{3}b+b}\)= \(-\dfrac{2}{3}b:\dfrac{4}{3}b\) = \(-\dfrac{1}{2}\).
Bài 2:
\(\left(a-b\right)^2=\left(a+b\right)^2-4ab=10^2-4\cdot21=16\)
dùng bất đẳng thức
a)Ta có: (a+b)2=a2+2ab+b2=a2-2ab+4ab+b2=(a2-2ab+b2)+4ab=(a-b)2+4ab
=>(a+b)2=(a-b)2+4ab
b)Ta có: (a-b)2=a2-2ab+b2=a2+2ab-4ab+b2=(a2+2ab+b2)-4ab=(a+b)2-4ab
=>(a-b)2=(a+b)2-4ab