Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
đặt a-b = x, b-c = y, c-a = z
(a-b)^2+(b-c)^2+(c-a)^2=(a+b-2c)^2+(b+c-2a)^2+(c+a-2b)^2
<=> x^2+y^2+z^2=(y-z)^2+(z-x)^2+(x-y)^2
tới đây suy ra đpcm là đc
a: \(\left(ax-by\right)^2+\left(bx+ay\right)^2\)
\(=a^2x^2-2axby+b^2y^2+b^2x^2+2abxy+a^2y^2\)
\(=a^2\left(x^2+y^2\right)+b^2\left(x^2+y^2\right)\)
\(=\left(x^2+y^2\right)\left(a^2+b^2\right)\)
c: \(a^2+2ab+b^2-c^2\)
\(=\left(a+b\right)^2-c^2\)
\(=\left(a+b+c\right)\left(a+b-c\right)\)
\(=4m\cdot\left(4m-2c\right)\)
\(=16m^2-8mc\)
\(a^3+b^3+c^3-3abc=0\)
\(\Leftrightarrow\left(a+b\right)^3-3ab\left(a+b\right)-3abc=0\)
\(\Leftrightarrow\left(a+b+c\right)\left[\left(a+b\right)^2-\left(a+b\right)c+c^2\right]-3ab\left(a+b\right)-3abc=0\)
\(\Leftrightarrow\left(a+b+c\right)\left(a^2+2ab+b^2-ac-bc+c^2\right)-3ab\left(a+b+c\right)=0\)
\(\Leftrightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}a+b+c=0\\a^2+b^2+c^2-ab-bc-ca=0\end{cases}}\)
Xét \(a^2+b^2+c^2-ab-bc-ca=0\)
\(\Leftrightarrow\frac{1}{2}\left[\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\right]=0\)
\(\Leftrightarrow a=b=c\)
\(\RightarrowĐPCM\)
Đặt \(\left(b+c-a;c+a-b;a+b-c\right)\rightarrow\left(x,y,z\right)\)
\(\Rightarrow x+y+z=a+b+c\)
Ta có:\(\left(x+y+z\right)^3-x^3-y^3-z^3\)
\(\left(x+y\right)^3-3\left(x+y\right)z\left(x+y+z\right)+z^3-x^3-y^3-z^3\)
\(=x^3+3xy\left(x+y\right)+y^3-3\left(x+y\right)z\left(x+y+z\right)+z^3-x^3-y^3-z^3\)
\(=3\left(x+y\right)\left(xy+xz+yz+z^2\right)\)
\(=3\left(x+y\right)\left(y+z\right)\left(z+x\right)\)
\(=3\cdot2a\cdot2b\cdot2c=24abc\)