Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Phân tích \(aaa=111.a\)
\(=>aaa=111.a=37.3.a\)
\(\)Mà 37 chia hết cho 37 \(=>37.3.a\)chia hết cho 37
\(=>111.a\)chia hết cho 37.
\(=>aaa\)cũng chia hết cho 37.
a)aaa=a*111 mà 111=3*37 chia hết cho 37
b)aaa aaa=a*111 111 mà 111 111=3*7*11*13*37 chia hết cho 7
c)abc abc=abc*1001 mà 1001=7*11*13 chia hết cho 11.
Câu hỏi tương tự:
Chứng tỏ rằng số có dạng aaa bao giờ cũng chia hết cho 37
Toán lớp 6Chứng minh phản chứng
Nguyễn Tiến Hải 08/10/2014 lúc 08:39
aaa= a x 111 = a x 3 x 37 luôn luôn chia hết cho 37
aaa = a x 111 = a x 3 x 37 luôn luôn chia hết cho 37
♥ ☼ ↕ ✿ ⊰ ⊱ ✪ ✣ ✤ ✥ ✦ ✧ ✩ ✫ ✬ ✭ ✯ ✰ ✱ ✲ ✳ ❃ ❂ ❁ ❀ ✿ ✶ ✴ ❄ ❉ ❋ ❖ ⊹⊱✿ ✿⊰⊹ ♧ ✿ ♂ ♀ ∞ ☆ 。◕‿◕。 ☀ ツⓛ ⓞ ⓥ ⓔ ♡ ღ ☼★ ٿ « » ۩ ║ ● ♫ ♪
Ta có: \(\overline{aaa}=111a=37.3.a\) chia hết cho \(37\).
Vậy số có dạng \(\overline{aaa}\) bao giờ cũng chia hết cho \(37\).
dễ
ta có : aaa
= a x 100 + a x 10 + a x 1
= a x ( 100 + 10 +1 )
= a x 111
Mà a x 111 = a x 3 x 37
=> aaa chia hết cho 37
1. Ta có 14 và 28 có cùng số dư khi chia7 là 0
mà 28 - 14 = 14 chia hết cho 7 (đpcm)
2. Ta có : \(\overline{aaa}=\overline{a}.111\)
=> \(\overline{aaa}=\overline{a}.3.37⋮37\)
=> \(\overline{aaa}\) luôn chia hết cho 37 (đpcm)
1, Gọi số thứ nhất có dạng 7k+n ; số thứ 2 có dạng 7x+n;
=> \(7k+n-\left(7x+n\right)=7k-7x=7\left(k-x\right)⋮7\)
2, Ta có: \(\overline{aaa}=100a+10a+a=111a=37.3.a⋮37\)
Do có chứa 1 thừa số là 37;
3, \(\overline{ab}-\overline{ba}=10a+b-\left(10b+a\right)=9a-9b=9\left(a-b\right)⋮9\)
aaa=a.111=a.3.37 chia hết cho 37
=> aaa chia hết cho 37
=> đpcm.
làm đầu tiên mà