K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

DD
15 tháng 1 2022

\(a=7+7^2+7^3+7^4+...+7^{100}\)

\(=\left(7+7^2\right)+\left(7^3+7^4\right)+...+\left(7^{99}+7^{100}\right)\)

\(=\left(7+7^2\right)+7^2\left(7+7^2\right)+...+7^{98}\left(7+7^2\right)\)

\(=56\left(1+7^2+...+7^{98}\right)\)chia hết cho \(56\).

13 tháng 11 2015

a) /-28/ + (-42) = 28 +(-42) = -14

b) đặt S = 76+75+74+73+72+7

7S = 7^7+7^6+7^5+7^4+7^3+7^2

7S-S= (7^7+7^6+7^5+7^4+7^3+7^2) - ( 76+75+74+73+72+7)

6S = 77-7 = 823536

S = 823536:6 =137256

9 tháng 12 2021

\(\left(7+7^2+7^3\right)+...+\left(7^{58}+7^{59}+7^{60}\right)\)

\(7\left(1+7+7^2\right)+...+7^{58}\left(1+7+7^2\right)\)

\(57.7+...+57.7^{58}\) \(⋮57\)

\(=7\left(1+7+7^2\right)+...+7^{58}\left(1+7+7^2\right)\)

\(=57\cdot\left(1+...+7^{58}\right)⋮57\)

4 tháng 10 2015

3)7+7^2+7^3+...+7^100

=>7C-C=7^101-7

=>C=\(\frac{7^{101}-7}{6}\)

AH
Akai Haruma
Giáo viên
30 tháng 1 2021

Bài 1:

$5a+8b\vdots 3$

$\Leftrightarrow 5a+8b-3(2b+2a)\vdots 3$

$\Leftrightarrow 5a+8b-6b-6a\vdots 3$

$\Leftrightarrow 2b-a\vdots 3$

 Ta có đpcm. 

 

AH
Akai Haruma
Giáo viên
30 tháng 1 2021

Bài 2. Bổ sung thêm điều kiện $n$ là số tự nhiên.

Ta có: $A=n(2n+7)(7n+7)=7n(2n+7)(n+1)$

Vì $n,n+1$ là 2 số tự nhiên liên tiếp nên sẽ tồn tại 1 số chẵn và 1 số lẻ

$\Rightarrow n(n+1)\vdots 2$

$\Rightarrow A=7n(n+1)(2n+7)\vdots 2(1)$

Mặt khác:

Nếu $n\vdots 3$ thì $A=7n(n+1)(2n+7)\vdots 3$

Nếu $n$ chia $3$ dư $1$ thì $2n+7$ chia hết cho $3$ 

$\Rightarrow A\vdots 3$

Nếu $n$ chia $3$ dư $2$ thì $n+1$ chia hết cho $3$

$\Rightarrow A\vdots 3$

Tóm lại $A\vdots 3(2)$

Từ $(1);(2)$ mà $(2,3)=1$ nên $A\vdots (2.3)$ hay $A\vdots 6$