K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 1 2016

khó quá

thông cảm

27 tháng 1 2016

bài này thầy ra 

20 tháng 7 2015

Ta có n(n+1) chia hết cho 2 với mọi n E N.

Với n=3k ta có 3k(3k+1)(6k+1) chia hết cho 3 và tích chia hết cho 6

n=3k+1 ta có (3k+1)(3k+2)(6k+3)=3(3k+1)(3k+2)(2k+1) chia hết cho 6

n=3k+2 ta có (3k+2)(3k+3)(6k+5)=3(3k+2)(k+1)(6k+5) chia hết cho 6. kết hợp các điều trên ta có đpcm

 

17 tháng 7 2017
 

Ta có n(n+1) chia hết cho 2 với mọi n E N.

Với n=3k ta có 3k(3k+1)(6k+1) chia hết cho 3 và tích chia hết cho 6

n=3k+1 ta có (3k+1)(3k+2)(6k+3)=3(3k+1)(3k+2)(2k+1) chia hết cho 6

n=3k+2 ta có (3k+2)(3k+3)(6k+5)=3(3k+2)(k+1)(6k+5) chia hết cho 6. kết hợp các điều trên ta có đpcm

k nha ban hien  

 
 
4 tháng 1 2016

n(n + 1)(2n + 1) chia hết cho 6

n(n + 1)(2n + 1) chia hết cho 2 và 3

n(n + 1) là tích 2 số tự nhiên liên tiếp 

Nên n(n + 1) chia hết cho 2 < = > n(n + 1)(2n + 1) chia hết cho 2

n chia hết cho 3 => Tích chia hết cho 3

n chia 3 dư 1 => 2n + 1 chia hết cho 3 => Tích chia hết cho 3

n chia 3 dư 2 => n + 1 chia hết cho 3 => Tích chia hết cho 3

< = > n(n + 1)(2n + 1) chia hết cho 3

UCLN(2,3) = 1

Do đó n(n + 1)(2n + 1) chia hết cho 2.3 = 6 

=> ĐPCM 

15 tháng 6 2017

a) Giải:

Đặt \(A_n=11^{n+2}+12^{2n+1}\)\((*)\) Với \(n=0\) ta có:

\(A_0=11^2+12^1=133\) \(⋮133\Rightarrow\) \((*)\) đúng

Giả sử \((*)\) đúng đến giá trị \(k=n\) tức là:

\(B_k=11^{k+2}+12^{2k+1}\) \(⋮133\left(1\right)\)

Xét \(B_{k+1}-B_k\)

\(=11^{k+1+2}+12^{2\left(k+1\right)+1}-\left(11^{k+2}+12^{2k+1}\right)\)

\(=11^{k+3}-11^{k+2}+12^{2k+3}-12^{2k+1}\)

\(=10.11^{k+2}+143.12^{2k+1}\)

\(=10.121.11^k+143.12.144^k\)

\(\equiv\) \(10.121.11^k+10.12.11^k\)

\(\equiv\) \(10.11^k\left(121+12\right)\) \(\equiv\) \(0\left(mod133\right)\)

Theo giả thiết quy nạy \(\left(1\right)\) ta có: \(B_k⋮133\Leftrightarrow B_{k+1}⋮133\)

Hay \((*)\) đúng với \(n=k+1\) \(\Rightarrow\) Đpcm

6 tháng 6 2017

ta có:\(\frac{2n+7}{n+1}\)=\(\frac{2\left(n+1\right)+6}{n+1}\)=\(2+\frac{6}{n+1}\)

Để 2+\(\frac{6}{n+1}\)thuộc Z

=>n+1 thuộc Ư(6)

=>n+1 thuộc {1;-1;2;-2;3;-3;6;-6}

n thuộc {0;-2;1;-3;2;-4;5;-7}

vậy n thuộc {0;-2;1;-3;2;-4;5;-7}

6 tháng 6 2017

Ta có \(2n+7⋮n+1\Rightarrow2\left(n+1\right)+5⋮n+1\)

Vì \(2\left(n+1\right)⋮n+1\) nên \(5⋮n+1\)

\(\Rightarrow n+1\inƯ\left(5\right)=\left\{-5;-1;1;5\right\}\)

Thử từng ước của 5 rồi tìm n thỏa mãn