K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
25 tháng 10 2024

Lời giải:

$A=a^5b-ab^5=ab(a^4-b^4)=ab(a^2-b^2)(a^2+b^2)$

Nếu $a,b$ khác tính chẵn lẻ thì hiển nhiên 1 trong 2 số là số chẵn, 

$\Rightarrow ab\vdots 2\Rightarrow A\vdots 2$

Nếu $a,b$ cùng tính chẵn lẻ thì $a^2-b^2\vdots 2$

$\Rightarrow A\vdots 2$

Vậy tóm lại $A\vdots 2(1)$

Lại có:
Nếu ít nhất 1 trong 2 số $a,b$ chia hết cho 3 thì hiển nhiên $A\vdots 3$.

Nếu cả 2 số $a,b$ đều không chia hết cho 3. Ta biết 1 scp khi chia 3 dư 0 hoặc 1. Mà $a,b$ không chia hết cho 3 nên $a^2,b^2$ chia 3 dư 1.

$\Rightarrow a^2-b^2\equiv 1-1\equiv 0\pmod 3$
$\Rightarrow A\vdots 3$

Vậy $A\vdots 3(2)$

Xét tính chia hết cho 5

Nếu 1 trong 2 số $a,b$ chia hết cho 5 thì hiển nhiên $A\vdots 5$

Nếu cả 2 số đều không chia hết cho 5. 

Ta biết 1 scp khi chia 5 dư 0,1,4. Vì $a,b$ không chia hết cho 5 nên $a^2,b^2$ chia 5 dư 1 hoặc 4.

TH $a^2,b^2$ cùng dư 1 hoặc cùng dư 4 khi chia 5 thì $a^2-b^2\vdots 5\Rightarrow A\vdots 5$

TH $a^2,b^2$ khác dư, tức là 1 số chia 5 dư 1 còn 1 số chia 5 dư 4

$\Rightarrow a^2+b^2\equiv 1+4\equiv 5\equiv 0\pmod 5$

$\Rightarrow A\vdots 5$

Vậy tóm lại $A\vdots 5(3)$

Từ $(1); (2); (3)$ mà $2,3,5$ đôi một nguyên tố cùng nhau nên $A\vdots (2.3.5)$ hay $A\vdots 30$

6 tháng 10 2018

a,  29 - 1 = 511 không chia hết cho 3.

b, \(5^6-10^4=5^6-5^4.2^4\)

                     \(=5^4\left(5^2-2^4\right)=5^4.9⋮9\)

c, \(\left(n+6\right)^2-\left(n-6\right)^2=\left(n+6+n-6\right)\left(n+6-n+6\right)=2n.12=24n⋮24\)

d,\(\left(3n+4\right)^2-16=9n^2+24n+16-16=9n^2+24n⋮3\)

Chúc bạn học tốt

13 tháng 8 2016

Bài 1 A=xyz+xz-zy-z+xy+x-y-1

thay các gtri x=-9, y=-21 và z=-31 vào là đc

=> A=-7680

Bài 2:a) n³ + 3n² + 2n = n²(n + 1) + 2n(n + 1) = n(n + 1)(n + 2)
số chia hết cho 6 là số chia hết cho 2 và 3
mà (n + 1) chia hết cho 2 và 3 với mọi số nguyên n
(n + 2) chia hết cho 2 và 3 với mọi số nguyên n
=>n³ + 3n² + 2n luôn chia hết cho 6 với mọi số nguyên n

b) 49n+77n-29n-1

=\(49^n-1+77^n-29^n\)

=\(\left(49-1\right)\left(49^{n-1}+49^{n-2}+...+49+1\right)+\left(77-29\right)\left(79^{n-1}+..+29^n\right)\)

=48(\(49^{n-1}+...+1+77^{n-1}+...+29^{n-1}\))

=> tích trên chia hết 48

c) 35x-14y+29-1=7(5x-2y)+7.73

=7(5x-2y+73) tích trên chia hết cho 7

=. ĐPCM

12 tháng 3 2023

Ta coˊ :xy+x+1x+yz+y+1y+xz+z+1z

=���+�+1+�����+��+�+����2��+���+��=xy+x+1x+xyz+xy+xxy+x2yz+xyz+xyxyz

=���+�+1+����+�+1+1��+�+1(Vıˋ ���=1)=xy+x+1x+xy+x+1xy+xy+x+11(Vıˋ xyz=1)

=�+��+1��+�+1=xy+x+1x+xy+1

=1=1

10 tháng 2 2019

Dễ thấy a6 và b6 là lũy thừa bậc 6 của 1 số nguyên nên chia 9 dư 1 hoặc dư 0. Mà a và b ko chia hết cho 3 nêà a6 và b6 chia 9 dư 1.

\(\Rightarrow\) a6 - b6 \(⋮\) 9 (đpcm)

4 tháng 8 2019

Ta thấy : \(a^5-a=a\left(a^4-1\right)=a\left(a^2-1\right)\left(a^2+1\right).\)

\(=a\left(a-1\right)\left(a+1\right)\left(a^2-4+5\right)\)

\(=a\left(a-1\right)\left(a+1\right)\left(a^2-4\right)+5a\left(a-1\right)\left(a+1\right)\)

\(=\left(a-2\right)\left(a-1\right)a\left(a+1\right)\left(a+2\right)+5a\left(a-1\right)\left(a+1\right)\)

Ta có :\(\left(a-2\right)\left(a-1\right)a\left(a+1\right)\left(a+2\right)\)là tích 5 số tự nhiên liên tiếp :

\(\Rightarrow\left(a-2\right)\left(a-1\right)a\left(a+1\right)\left(a+2\right)\)\(⋮\)\(5\)và cũng \(⋮\)\(6\)( cũng là 3 số tự nhiên liên tiếp )

\(\Rightarrow\left(a-2\right)\left(a-1\right)a\left(a+1\right)\left(a+2\right)\)\(⋮\)\(30\)\(\left(1\right)\)

Ta lại có : \(5\)\(⋮\)\(5\)và \(\left(a-1\right)a\left(a+1\right)\)\(⋮\)\(6\)

\(\Rightarrow5a\left(a-1\right)\left(a+1\right)\)\(⋮\)\(30\)\(\left(2\right)\)

Từ ( 1 ) và ( 2 ) \(\Rightarrow\left(a-2\right)\left(a-1\right)a\left(a+1\right)\left(a+2\right)+5a\left(a-1\right)\left(a+1\right)\)\(⋮\)\(30\)

Hay \(a^5-a\)\(⋮\)\(30\)

Tương tự \(b^5-b\)và \(c^5-c\)cũng chia hết cho 30 

\(\Rightarrow a^5+b^5+c^5-\left(a+b+c\right)\)\(⋮\)\(30\)

Mà \(a+b+c\)\(⋮\)\(30\)

\(\Rightarrow a^5+b^5+c^5\)\(⋮\)\(30\)\(\left(đpcm\right)\)

25 tháng 3 2016

Bài này không khó, tự xử đi!

14 tháng 3 2017

Vì a+b+c=0 nên

\(a^5+b^5+c^5=a^5+b^5+c^5-a-b-c\)

= \(a\left(a^4-1\right)+b\left(b^4-1\right)+c\left(c^4-1\right)\)

Lại có :

\(a\left(a^4-1\right)=a\left(a^2-1\right)\left(a^2+1\right)\)= \(a\left(a+1\right)\left(a-1\right)\left(a^2-4+5\right)\)

= \(a\left(a+1\right)\left(a-1\right)\left(a^2-4\right)+5a\left(a+1\right)\left(a-1\right)\)

= \(a\left(a+1\right)\left(a-1\right)\left(a+2\right)\left(a-2\right)+5a\left(a+1\right)\left(a-1\right)\)

Vì : \(a\left(a+1\right)\) là tích của 2 số thực liên tiếp nên chia hết cho 3

\(a\left(a+1\right)\left(a-1\right)\)là tích của 3 số thực liên tiếp nên chia hết cho 3

\(a\left(a+1\right)\left(a-1\right)\left(a+2\right)\left(a-2\right)\)là tích của 5 số thực liên tiếp nên chia hết cho 5

Mà (2,3,5) = 1 nên \(a\left(a+1\right)\left(a-1\right)\left(a+2\right)\left(a-2\right)\)chia hết cho 2.3.5=30

Suy ra \(a^5-a\) chia hết cho 30

Cmtt ta được \(b^5-b\)\(c^5-c\) chia hết cho 30

Suy ra \(a^5+b^5+c^5-a-b-c\) chia hết cho 30 hay

\(a^5+b^5+c^5\) chia hết cho 30 khi a+b+c = 0