K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 6 2019

\(a^3+b^3+c^3-3abc=\left(a+b\right)^3-3ab\left(a+b\right)+c^3-3abc\)\(=\left(a+b+c\right)^3-3\left(a+b\right)c\left(a+b+c\right)-3ab\left(a+b+c\right)\)

\(=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)\)

23 tháng 6 2019

#)Giải :

Ta có : (a + b + c)(a+ b+ c- ab - bc - ca) 

= a3 + ab+ ac2 - a2b - abc - ca2 + a2b + b3 + bc2 - ab2 - b2c - abc + a2c + cb2 + c3 - abc - bc2 - c2a

Loại bỏ các hạng tử đồng dạng, ta được : 

= a3 + b3 + c3 - 3abc

=> a3 + b3 + c3 - 3abc = (a + b + c)(a+ b+ c- ab - bc - ca)  => đpcm

2 tháng 4 2017

Giải:

Áp dụng BĐT trong tam giác ta có:

\(\left\{{}\begin{matrix}a+b>c\Rightarrow ac+bc>c^2\left(1\right)\\b+c>a\Rightarrow ab+ac>a^2\left(2\right)\\c+a>b\Rightarrow bc+ab>b^2\left(3\right)\end{matrix}\right.\)

Cộng \(\left(1\right);\left(2\right);\left(3\right)\) theo vế ta có:

\(2\left(ab+bc+ca\right)>a^2+b^2+c^2\)

Hay \(a^2+b^2+c^2< 2\left(ab+bc+ca\right)\) (Đpcm)

a2là góc đó hả

23 tháng 6 2019

Hình như thiếu chứng minh cái j r kìa bạn ơi

3 tháng 5 2017

@phynit

@phynit

Thầy giúp em nhan thầy! Cảm ơn thầy nhiều!

3 tháng 5 2017

first sai đề thử a=b=c=2/3 là rõ

second cũng là cuối: đừng hỏi mấy cái kiến thức quá tầm kẻo làm lại ko hiểu

4 tháng 11 2016

a ) \(A=\frac{ax^2\left(a-x\right)-a^2x\left(x-a\right)}{3a^2-3x^2}=\frac{ax\left(a-x\right)\left(a+x\right)}{3\left(a-x\right)\left(a+x\right)}=\frac{ax}{3}\)

Thay \(a=\frac{1}{2};x=-3\), ta có :

\(A=\frac{\frac{1}{2}.-3}{3}=-\frac{1}{2}\)

b ) \(B=\frac{\left(ab+bc+cd+da\right)abcd}{\left(c+d\right)\left(a+b\right)+\left(b-c\right)\left(a-d\right)}=\frac{\left[\left(ab+ad\right)+\left(bc+cd\right)\right]abcd}{ca+cb+da+db+ba-bd-ca+cd}\)

\(=\frac{\left[a\left(b+d\right)+c\left(b+d\right)\right]abcd}{ba+da+cb+cd}=\frac{\left(b+d\right)\left(a+c\right)abcd}{\left(b+d\right)\left(a+c\right)}=abcd\)

Thay \(a=-3;b=-4;c=2;d=3\), ta có :

\(B=\left(-3\right).\left(-4\right).2.3=72\)

 

18 tháng 2 2019

VL CTV MÀ CŨNG HỎI

CTV cũng được phép hỏi chứ bạn.

Đặt \(\hept{\begin{cases}a+b=m\\b+c=n\\c+a=p\end{cases}}\)

Xem VT = A

\(\Rightarrow A=m^2+n^2+p^2-mn-np-mp\)

\(2A=\left(m-n\right)^2+\left(n-p\right)^2+\left(p-m\right)^2\)

\(=\left(a+b-b-c\right)^2+\left(b+c-c-a\right)^2+\left(c+a-a-b\right)^2\)

\(=\left(a-c\right)^2+\left(b-a\right)^2+\left(c-b\right)^2\)

\(=a^2-2ac+c^2+b^2-2ab+a^2+c^2-2bc+b^2\)

\(=2\left(a^2+b^2+c^2-2ab-2bc-2ac\right)\)

\(\Rightarrow A=a^2+b^2+c^2-ab-bc-ca\)(đpcm)

5 tháng 10 2015

a; b; c là 3 cạnh của tam giác => |a - c| < b ; |a - b| < c ; |b - c| < a

=> (|a - c|)2 < b2 => a2 - 2ac + c< b2  (1)

(|a - b|)2 < c=> a- 2ab + b< c2   (2)

(|b - c|)2 < a2 => b2 - 2bc + c< a2   (3)

Cộng từng vế của  (1)(2)(3) ta được: 2(a2 + b+ c2) - 2(ab + bc + ca) < a+ b+ c2

=> a+ b+ c< ab + bc + ca (đpcm)