![](https://rs.olm.vn/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
a)
( a + b ) . (a2 - ab + b2 )
= a ( a2 - ab + b2) + b ( a2-ab + b2 )
= a3 - a2.b + a.b2 + b.a2 - a . b2 + b3
= -a2.b+ b.a2 + (a .b2 -a.b2) + (a3 + b3)
= 0 + 0 + (a3+b3)
= a3 + b3 (ĐPCM)
Vậy ( a + b ) x (a2 - ab + b2 ) = a3 + b3
b)
( a - b ) . (a2 - ab + b2 )
= a ( a2 + ab + b2) - b ( a2+ ab + b2 )
= a3 + a2.b + a.b2 - b.a2 - a . b2 - b3
= (a2.b - b.a2 ) + (a .b2 -a.b2) + (a3 - b3)
= 0 + 0 + (a3- b3)
= a3 - b3 (ĐPCM)
Vậy ( a - b ) x (a2 + ab + b2 ) = a3 - b3
a) cho A = 2+22+23+...+260
cmr A chia hết cho 3 và 7
b) cho B = 3+33+35+...+31991
cmr B chia hết cho 13
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
a)A=2+2^2+2^3.....+2^60
(2+2^2)+(2^3+2^4)+.....+(2^59+2^60)
2×(1+2)+2^3×(1+2)+....+2^59×(1+2)
2×3+2^3×3+...+2^59×3
vì 3 chia hết cho 3 nên:
2×3+2^3×3+...+2^59×3 chia hết cho 3
2+2^2+2^3+....+2^60
(2+2^2+2^3)+....+(2^58+2^59+2^60)
2×(1+2+2^2)+....+2^58×(1+2+2^2)
2×(1+2+4)+....+2^58×(1+2+4)
2×7+.....+2^58×7
vì 7 chia hết cho 7 nên:
2×7+....+2^58×7 chia hết cho 7
b)B=3+3^2+3^3+.....+3^1991
(3+3^2+3^3)+...+(3^1989+3^1990+3^1991)
3×(1+3+3^2)+....+3^1989×(1+3+3^2)
3×(1+3+9)+....+3^1989×(1+3+9)
3×13+....+3^1989×13
vì 13 chia hết cho 13 nên
3×13+....+3^1989×13 chia hết cho 13
![](https://rs.olm.vn/images/avt/0.png?1311)
a, \(A=1+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{50^2}\)
\(A< 1+\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{49.100}\)
\(A< 1+1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{49}-\frac{1}{50}\)
\(A< 2-\frac{1}{50}\)
\(A< 2\)
b, \(B=2+2^2+2^3+...+2^{30}\)
Ta có :\(B=\left(2+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{29}+2^{30}\right)\)
\(B=2\left(1+2\right)+2^3\left(1+2\right)+...+2^{29}\left(1+2\right)\)
\(B=2.3+2^3.3+...+2^{29}.3\)
\(B=3\left(2+2^3+...+2^{29}\right)\)chia hết cho 3(1)
Lại có\(B=\left(2+2^2+2^4\right)+...+\left(2^{28}+2^{29}+2^{30}\right)\)
\(B=2\left(1+2+4\right)+...+2^{28}\left(1+2+4\right)\)
\(B=2.7+...+2^{28}.7\)
\(B=7\left(2+...+2^{29}\right)\) chia hết cho 7 (2)
Mà (3,7)=1 (3)
Từ (1)(2)(3) => B chia hết cho 21
\(a^3+b^3=a^3+a^2b-a^2b-ab^2+ab^2+b^3=a^2\left(a+b\right)-ab\left(a+b\right)+b^2\left(a+b\right)=\left(a+b\right)\left(a^2-ab+b^2\right)\)