Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
DO a,b,c đối xứng , giả sử \(a\ge b\ge c\Rightarrow\hept{\begin{cases}a^2\ge b^2\ge c^2\\\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}\end{cases}}\)
áp dụng bất đẳng thức trê-bư-sép ta có
\(a^2.\frac{a}{b+c}+b^2.\frac{b}{a+c}+c^2.\frac{c}{a+b}\ge\frac{a^2+b^2+c^2}{3}\left(\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}\right)=\frac{1}{3}.\frac{3}{2}=\frac{1}{2}\)
vậy \(\frac{a^2}{b+c}+\frac{b^2}{a+c}+\frac{c^2}{a+b}\ge\frac{1}{2}\)dấu bằng xảy ra khi\(a=b=c=\frac{1}{\sqrt{3}}\)
Ta sẽ chứng minh c là cạnh nhỏ nhất.
Thật vậy,giả sử c không phải là cạnh nhỏ nhất.
Giả sử \(c\ge a\Rightarrow c+c\ge a+c>b\Rightarrow2c>b\Leftrightarrow4c^2>b^2\)
Do \(c\ge a\) nên \(4c^2+c^2=5c^2\ge a^2+b^2\) (trái với gt)
Với \(c\ge b\) chứng minh tương tự của dẫn đến vô lí.
Do đó c là cạnh nhỏ nhất.Khi đó:
\(a+b+c>3c\Rightarrow\widehat{A}+\widehat{B}+\widehat{C}=180^o>3.\widehat{C}\Leftrightarrow\widehat{C}< 60^o\) (đpcm)
Không chắc nha!Sai đừng trách.
Giả sử \(c\ge a>0\)\(\Rightarrow c^2\ge a^2\)mà \(a^2+b^2>5c^2\)
\(\Rightarrow a^2+b^2>5a^2\Rightarrow b^2>4a^2\Rightarrow b>2a\) (1)
Vì \(c^2\ge a^2\Rightarrow c^2+b^2\ge a^2+b^2>5c^2\Rightarrow b^2>4c^2\Rightarrow b>2c\)(2)
Từ (1) và (2) => 2b>2a+2c => b> a + c (vô lý) => c<a
Tương tự ta được c<b => c là độ dài cạnh nhỏ nhất
=> \(\widehat{C}\)là góc nhỏ nhất \(\Rightarrow\widehat{C}< \widehat{A}\)và \(\widehat{C}< \widehat{B}\)
=> \(3\widehat{C}< \widehat{A}+\widehat{B}+\widehat{C}=180^o\Rightarrow\widehat{C}< 60^o\)
Vậy \(\widehat{C}< 60^o\)(đpcm)
a, x2 = x
=> x2 - x =0
=> x(x-1) =0
=> x = 0 hoặc x=1
b, x2 = 2x
=> x2 - 2x =0
=> x(x-2) = 0
=> x= 0 hoặc x=2
c, x2 = -1
vì x2 \(\ge\)0 với mọi x
=> x2 +1 >0
=> x2 > -1
=> x2 =-1 là vô lí
d, x2 =1
=> x = 1 hoặc x =-1
Bài làm :
\(a,x^2=x\)
\(\Leftrightarrow x^2-x=0\)
\(\Leftrightarrow x\left(x-1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=1\end{cases}}\)
\(b,x^2=2x\)
\(\Leftrightarrow x^2-2x=0\)
\(\Leftrightarrow x\left(x-2\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=2\end{cases}}\)
\(c,x^2=-1\) ( sai )
Vì \(x^2\ge0\forall x\)
\(d,x^2=1\)
\(\Rightarrow\orbr{\begin{cases}x=1\\x=-1\end{cases}}\)
Học tốt
a) \(x^2=x\Leftrightarrow x^2-x=0\Leftrightarrow x\left(x-1\right)=0\Leftrightarrow\orbr{\begin{cases}x=0\\x=1\end{cases}}\)
b) \(x^2=2x\Leftrightarrow x^2-2x=0\Leftrightarrow x\left(x-2\right)=0\Leftrightarrow\orbr{\begin{cases}x=0\\x=2\end{cases}}\)
c) \(x^2=-1\)vì \(x^2\ge0,\forall x\)nên phương trình vô nghiệm.
d) \(x^2=1\Leftrightarrow x^2-1=0\Leftrightarrow\left(x-1\right)\left(x+1\right)=0\Leftrightarrow\orbr{\begin{cases}x=1\\x=-1\end{cases}}\)
a, x2 = x
x2 - x = 0
x (x - 1) = 0
=> x = 0 hoặc x - 1 = 0
=> x = 0 hoặc x = 1
Vậy x thuộc {0 ; 1}.
b, x2 = 2x
x2 - 2x = 0
x (x - 2) = 0
=> x = 0 hoặc x - 2 = 0
=> x = 0 hoặc x = 2
Vậy x thuộc {0 ; 2}.
c, x2 = -1
Ta có: x2 >= 0 với mọi x
=> x2 = -1 (vô lí)
Vậy x thuộc tập hợp rỗng.
d, x2 = 1
=> x2 = 12 = (-1)2
=> x = 1 hoặc x = -1
Vậy x thuộc {-1 ; 1}.
????????????????????
đúng = 3 k