K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 4 2016

Ta có a^2+b^2+1>=ab+a+b (1)

<=> 2a^2+2b^2+2>=2ab+2a+ab

<=>2a^2+2b^2+2-2ab-2a-2b>=0

<=>(a^2-2ab+b^2)+(a^2-2a+1)+(b^2-2b+1)>=0

<=>(a-b)^2+(a-1)^2+(b-1)^2>=0 luôn đúng

       Vây BĐT(1) đúng (đpcm)

8 tháng 4 2016

a2+b2+1-ab-a-b>=0

2a2+2b2+2-2ab-2a-2b>=0

(a-b)2+(a-1)2+(b-1)2>=0

Dấu = xảy ra khi a=b

17 tháng 2 2017

\(M=\frac{1}{ab}+\frac{1}{a^2+ab}+\frac{1}{b^2+ab}+\frac{1}{a^2+b^2}\)

\(=\left(\frac{1}{2ab}+\frac{1}{a^2+b^2}\right)+\left(\frac{1}{a^2+ab}+\frac{1}{b^2+ab}\right)+\frac{1}{2ab}\)

\(\ge\frac{\left(1+1\right)^2}{a^2+2ab+b^2}+\frac{\left(1+1\right)^2}{a^2+ab+b^2+ab}+\frac{2}{\left(a+b\right)^2}\)

\(=\frac{4}{\left(a+b\right)^2}+\frac{4}{\left(a+b\right)^2}+\frac{2}{\left(a+b\right)^2}\)

\(\ge\frac{4}{1}+\frac{4}{1}+\frac{2}{1}=10\)

Dấu = xảy ra khi a = b = \(\frac{1}{2}\)

11 tháng 12 2017

a/ \(\left(a^2+b^2\right)+\left(a^2+1\right)+\left(b^2+1\right)\ge2ab+2a+2b\)

\(\Leftrightarrow a^2+b^2+1\ge ab+a+b\)

b/ \(\dfrac{1}{a}+\dfrac{1}{b}\ge\dfrac{4}{a+b}\)

\(\Leftrightarrow a^2-2ab+b^2\ge0\)

\(\Leftrightarrow\left(a-b\right)^2\ge0\) đúng

c/ \(M=x^4-6x^3+13x^2-12x-5\)

Đặt \(x^2-3x=a\)thì ta có:

\(M=a^2+4a-5=\left(a+2\right)^2-9\ge-9\)

Dấu = xảy ra khi:

\(x^2-3x+2=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=2\end{matrix}\right.\)

30 tháng 3 2016

Dùng phép biến đổi tương đương thôi bạn ơi!

4 tháng 9 2017

.Tuy nhiên mik có thể chữa lại đề cho ae dễ đọc nha:

Cho a,b,c>0 và:

\(P=\frac{a^3}{a^2}+ab+b^2+\frac{b^3}{b^2}+bc+c^2+\frac{c^3}{c^2}+ac+a^2.\)

\(Q=\frac{b^3}{a^2}+ab+b^2+\frac{c^3}{b^2}+bc+c^2+\frac{a^3}{c^2}+ac+a^2.\)

Chứng minh rằng:P=Q.

25 tháng 3 2019

1,\(\Leftrightarrow2a^2+2b^2+2-2ab-2a-2b\ge0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(a-1\right)^2\left(b-1\right)^2\ge0\)(Luôn đúng)

Dấu '=' xảy ra khi \(a=b=1\)

26 tháng 3 2019

2/Bổ sung đk a,b >= 0 (nếu a,b < 0,cho a=b=-2 suy ra a^3 + b^3 + 1 -3ab = -27 < 0)

Ta chứng minh BĐT \(x^3+y^3+z^3\ge3xyz\)

\(\Leftrightarrow x^3+y^3+z^3-3xyz\ge0\Leftrightarrow\frac{1}{2}\left(x+y+z\right)\left[\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\right]\ge0\) (đúng)

Áp dụng vào,suy ra: \(a^3+b^3+1^3-3ab\ge3ab-3ab=0\)

Dấu "=" xảy ra khi a = b = c = 1

12 tháng 10 2017

sai ở chỗ  ab + a^2 - 2ab