K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 9 2021

\(a^2+b^2+c^2\text{≥}ab+bc+ca\)

\(2\left(a^2+b^2+c^2\right)\text{≥}2\left(ab+bc+ca\right)\)

\(\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ca+a^2\right)\text{≥}0\)

\(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\text{≥}0\) luôn đúng

11 tháng 9 2021

thiếu đề r bạn \(a^2+b^2\ge\) 

11 tháng 9 2021

cảm ơn bạn đã nhắc mk

 

11 tháng 9 2021

\(a^2+b^2\ge2ab\Leftrightarrow a^2-2ab+b^2\ge0\Leftrightarrow\left(a-b\right)^2\ge0\left(luon-dung\forall a,b\right)\)

dau"=" xay ra \(\Leftrightarrow a=b\)

\(\Rightarrow a^2+b^2\ge2ab\)

\(\Rightarrow b^2+c^2\ge2ac\)

\(\Rightarrow a^2+c^2\ge2ac\)

\(\Rightarrow2\left(a^2+b^2+c^2\right)\ge2\left(ab+bc+ca\right)\Leftrightarrow a^2+b^2+c^2\ge ab+bc+ca\)

dau"=" xay ra \(\Leftrightarrow a=b=c\)

11 tháng 9 2021

\(a^2+b^2\ge2ab\\ \Leftrightarrow a^2-2ab+b^2\ge0\\ \Leftrightarrow\left(a-b\right)^2\ge0\left(luôn.đúng\right)\)

Dấu \("="\Leftrightarrow a=b\)

Ta có \(\left\{{}\begin{matrix}a^2+b^2\ge2ab\\b^2+c^2\ge2bc\\a^2+c^2\ge2ac\end{matrix}\right.\)

Cộng vế theo vế của 3 BĐT, ta được:

\(2\left(a^2+b^2+c^2\right)\ge2\left(ab+ac+bc\right)\\ \Leftrightarrow a^2+b^2+c^2\ge ab+bc+ca\)

Dấu \("="\Leftrightarrow a=b=c\)

7 tháng 12 2016

giả sử a2+b2+c2 lớn hơn bằng ab+bc+ca=)a2+b2+c2-ab-bc-ca lớn hơn bằng 0

=)2.(a2+b2+c2-ab-bc-ca) lớn hơn bằng 0

=)2a2+2b2+2c2-2ab-2bc-2ca lớn hơn bằng 0

=)(a2-2ab+b2)+(b2-2bc+c2)+(c2-2ca+a2) lớn hơn bằng 0

=)(a-b)2+(b-c)2+(c-a)2 lớn hơn bằng 0 mà (a-b)2,(b-c)2,(c-a)2 luôn lớn hơn bằng 0

=)điều giả sử đúng =)điều phải chứng minh

20 tháng 4 2022

giả sử a2+b2+c2 lớn hơn bằng ab+bc+ca=)a2+b2+c2-ab-bc-ca lớn hơn bằng 0

 

=)2.(a2+b2+c2-ab-bc-ca) lớn hơn bằng 0

 

=)2a2+2b2+2c2-2ab-2bc-2ca lớn hơn bằng 0

 

=)(a2-2ab+b2)+(b2-2bc+c2)+(c2-2ca+a2) lớn hơn bằng 0

 

=)(a-b)2+(b-c)2+(c-a)2 lớn hơn bằng 0 mà (a-b)2,(b-c)2,(c-a)2 luôn lớn hơn bằng 0

 

=)điều giả sử đúng =)điều phải chứng minh

Ta có:

VT= a2 + b2 + c2 +\(\frac{21}{4}\)a2 + b+ c2 + \(\frac{16}{4}+\frac{5}{4}\)= a2 + b+ c2 + 4 + \(\frac{5}{4}\) 

Mà a2b2, c2 \(\ge\) 0 (bình phương một số luôn lớn hơn hoặc bằng 0) 

Vậy,  a2 + b+ c+ 4 + \(\frac{5}{4}\) \(\ge\) 4 + \(\frac{5}{4}\) hay a2 + b+ c2 +\(\frac{21}{4}\)\(\ge\) 4

 
20 tháng 6 2017

a)Ta có:\(a^2-ab+b^2=a^2-2.\frac{1}{2}ab+\frac{1}{4}b^2+\frac{3}{4}b^2\)

                                        \(=\left(a-\frac{1}{2}b\right)^2+\frac{3}{4}b^2\)

                       Vì \(\left(a-\frac{1}{2}b\right)^2\ge0;\frac{3}{4}b^2\ge0\)

              \(\Rightarrow\left(a-\frac{1}{2}b\right)^2+\frac{3}{4}b^2\ge0\)

Vậy \(a^2-ab+b^2\ge0\)

b)Tương tự với a

20 tháng 6 2017

b)a^2 +ab +b^2 = a^2 +ab +(b/2 )^2+ 3b^2/4 
= (a+b/2)^2 +3b^2/4 sẽ lớn hơn hoặc bằng 0

2 tháng 2 2021
12345:123bằng bao nhiêu