K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 9 2016

1/

a/ \(a^2\left(a+1\right)+2a\left(a+1\right)=a\left(a+1\right)\left(a+2\right)\)

Vì a(a+1)(a+2) là tích của 3 số nguyên liên tiếp nên chia hết cho 2 và 3

Mà (2,3) = 1 nên a(a+1)(a+2) chia hết cho 6. Ta có đpcm

b/ Đề sai , giả sử với a = 3

c/ \(x^2+2x+2=\left(x^2+2x+1\right)+1=\left(x+1\right)^2+1>0\)

d/ \(x^2-x+1=\left(x^2-x+\frac{1}{4}\right)+\frac{3}{4}=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}>0\)

e/ \(-x^2+4x-5=-\left(x^2-4x+4\right)-1=-\left(x-2\right)^2-1< 0\)

 

3 tháng 9 2016

2/ a/ \(x^2-6x+11=\left(x^2-6x+9\right)+2=\left(x-3\right)^2+2\ge2\)

BT đạt giá trị nhỏ nhất bằng 2 tại x = 3

b/ \(-x^2+6x-11=-\left(x^2-6x+9\right)-2=-\left(x-3\right)^2-2\le-2\)

BT đạt giá trị lớn nhất bằng -2 tại x = 3

3 tháng 1 2017

PTĐT thành NT :

\(=\left(a^2+2a\right)\left(a+1\right)=a\left(a+1\right)\left(a+2\right)\) là tích 3 số tự nhiên liên tiếp nên chia hết cho 2 và 3, mà ƯCLN(2;3)=1 nên nó chia hết cho 2.3 = 6

Vậy ...

9 tháng 2 2021

= (a+1)(a2+2a)

= (a+1)(a+2)a =a(a+1)(a+2)

Vì 3 số tự nhiên liên tục sẽ chia hết cho 6 => a2(a+1)(a+2) chia hết cho 6 với mọi a thuộc Z

8 tháng 8 2016

\(n^4-1=\left(n^2\right)^2-1^2=\left(n^2-1\right)\left(n^2+1\right)=\left(n-1\right)\left(n+1\right)\left(n^2+1\right)\)

n lẻ  

=> n - 1 và n + 1 chẵn

Tích của 2 số chẵn liên tiếp sẽ chia hết cho 8

=> Biểu thức trên chia hết cho 8 với mọi n lẻ (đpcm)

8 tháng 8 2016

ai giải giúp mình bài 2 và bài 3 với

3 tháng 11 2017

a)\(\left(a^2-1\right)=\left(a+1\right)\left(a-1\right)\)

Xét\(a=3k+1\)\(\Rightarrow a-1⋮3\)\(\Rightarrow a^2-1⋮3\)

Tương tự a=3k+2

Bạn chứng minh tích 2 số nhẵn liên tiếp chia hết cho 8

Mà (3;8)=1

\(\Rightarrow a^2-1⋮24\)