Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(\left(a^2+b^2\right)\left(x^2+y^2\right)=a^2x^2+a^2y^2+b^2x^2+b^2y^2\)
\(=a^2x^2-2abxy+b^2y^2+a^2y^2+2abxy+b^2x^2\) \(=\left(ax-by\right)^2+\left(ay+bx\right)\)
\(=vp\)
\(\Rightarrowđpcm\)
Lời giải:
\((a^2+b^2)(x^2+y^2)=(ax+by)^2\)
\(\Leftrightarrow a^2x^2+a^2y^2+b^2x^2+b^2y^2=a^2x^2+2axby+b^2y^2\)
\(\Leftrightarrow a^2y^2-2axby+b^2x^2=0\)
\(\Leftrightarrow (ay)^2-2(ay)(bx)+(bx)^2=0\)
\(\Leftrightarrow (ay-bx)^2=0\Rightarrow ay=bx\) (đpcm)
bn post nhiều nên mình ghi đáp án thôi nhé phần nào sai đề mình cho qua
b)\(\left(x+1\right)\left(xy+1\right)\)
c)\(\left(a+b\right)\left(x+y\right)\)
d)\(\left(x-a\right)\left(x-b\right)\)
e)\(\left(x+y\right)\left(xy-1\right)\)
f)\(\left(a-b\right)\left(x^2+y\right)\)
Ta có:
VT = (x2 + y2)(a2 + b2)
= x2a2 + x2b2 + y2a2 + y2b2
= (a2x2 + b2y2 + 2axby) + (a2y2 - 2aybx + b2x2)
= (ax + by)2 + (ay - bx)2
=> VT = VP => đpcm
\(a,ax+by+ay+bx=\left(ax+ay\right)+\left(by+bx\right)=a\left(x+y\right)+b\left(x+y\right)=\left(a+b\right)\left(x+y\right)\)
\(b,x^2y+xy+x+1=xy\left(x+1\right)+\left(x+1\right)=\left(xy+1\right)\left(x+1\right)\)
\(c,x^2-ax-bx+ab=x\left(x-a\right)-b\left(x-a\right)=\left(x-b\right)\left(x-2\right)\)
\(d,x^2y+xy^2-x-y=xy\left(x+y\right)-\left(x+y\right)=\left(xy-1\right)\left(x+y\right)\)
\(e,a\left(x^2+y\right)-b\left(x^2+y\right)=\left(a-b\right)\left(x^2+y\right)\)
\(f,x\left(a-2\right)-a\left(a-2\right)=\left(x-a\right)\left(a-2\right)\)
\(\left(a^2+b^2\right)\left(x^2+y^2\right)=x^2\left(a^2+b^2\right)+y^2\left(a^2+b^2\right)\)
\(=a^2x^2+b^2x^2+a^2y^2+b^2y^2\)
\(\left(ax+by\right)^2=a^2x^2+2abxy+b^2y^2\)
\(\Rightarrow\left(a^2+b^2\right)\left(x^2+y^2\right)=\left(ax+by\right)^2\)
\(\Leftrightarrow a^2x^2+b^2x^2+a^2y^2+b^2y^2=a^2y^2+2abxy+b^2y^2\)
\(\Leftrightarrow a^2x^2+b^2x^2=2abxy\)
\(\Leftrightarrow a^2x^2+b^2x^2-2abxy=0\)
\(\Leftrightarrow\left(ax-bx\right)^2=0\)
\(\Leftrightarrow ax-bx=0\left(đpcm\right)\)
Trả lời:
(a2 + b2 ) ( x2 + y2 ) - (ax + by )2
= a2x2 + a2y2 + b2x2 + b2y2 - [ ( ax )2 + 2.ax.by + ( by )2 ]
= a2x2 + a2y2 + b2x2 + b2y2 - ( a2x2 + 2axby + b2y2 )
= a2x2 + a2y2 + b2x2 + b2y2 - a2x2 - 2axby - b2y2
= a2y2 - 2axby + b2x2
= ( ay )2 - 2aybx + ( bx )2
= ( ay - bx )2 (đpcm)
\(x^2+2xy+y^2-xz-yz\)
\(=\left(x+y\right)^2-z\left(x+y\right)\)
\(=\left(x+y\right)\left(x+y-z\right)\)
mk chỉnh lại đề
\(x^2-2xy+y^2-z^2+2zt+t^2\)
\(=\left(x-y\right)^2-\left(z-t\right)^2\)
\(=\left(x-y-z+t\right)\left(x-y+z-t\right)\)
mk chỉnh lại đề:
\(ax^2+cx^2-ay+ay^2-cy+cy^2\)
\(=x^2\left(a+c\right)-y\left(a+c\right)+y^2\left(a+c\right)\)
\(=\left(a+c\right)\left(x^2-y+y^2\right)\)
\(ax^2+ay^2-bx^2-by^2+b-a\)
\(=x^2\left(a-b\right)+y^2\left(a-b\right)-\left(a-b\right)\)
\(=\left(a-b\right)\left(x^2+y^2-1\right)\)
\(ac^2-ad-bc^2+cd+bd-c^3\)
\(=a\left(c^2-d\right)-b\left(c^2-d\right)-c\left(c^2-d\right)\)
\(=\left(c^2-d\right)\left(a-b-c\right)\)
Ta có:
(\(a^2+b^2\)).(.\(x^2+y^2\)) = \(a^2.\left(x^2+y^2\right)+b^2.\left(x^2+y^2\right)\)
<=>\(ax^2-ay^2+bx^2-by^2\)
<=> \(\left(ax-by\right)^2+\left(ay+bx\right)^2\)
=> ĐPCM
VT: ( ax - by) ^ 2+ (ay +bx)^ 2
= (ax)^2 - 2axby + (by)^2 + (ay)^2+ 2aybx + (bx)^2
= (ax)^2 + (by)^2 + (ay)^2+ (bx)^2
= a^2 ( x^2 + y^2) + b^2 (x^2 + y^2)
= (a^2 +b^2) ( x^2+ b^2) = VP (dpcm)