Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)
\(123⋮3\\ 7\cdot3\cdot11119⋮3\\ \Rightarrow123+7\cdot3\cdot11119⋮3\)
Vậy \(123+7\cdot3\cdot11119⋮3\)
c)
\(8^8+2^{20}=\left(2^3\right)^8+2^{20}=2^{24}+2^{20}=2^{20}\cdot\left(2^4+1\right)=2^{20}\cdot\left(16+1\right)=2^{20}\cdot17⋮17\)
Vậy \(8^8+2^{20}⋮17\)
d)
Ta thấy:
\(...2^4=...6,...2^8=...6\Rightarrow...2^{4n}=...6\left(n\in N^{\circledast}\right)\)
\(...1^n=...1\left(n\in N^{\circledast}\right)\)
\(\left(...2\text{ là số có chữ số tận cùng là }2,\text{ tương tự với }...1,...6,...5\: \right)\)
\(\Rightarrow942^{60}-351^{37}=942^{4\cdot15}-351^{37}=...6-...1=...5⋮5\)
Vậy \(942^{60}-351^{37}⋮5\)
c, Ta có 10^21*2 và 20*2 nên 10^21+20*2
10&1 (mod 3) nên 10^21 & 1 ( mod 3)
nên 10^21+20 & 1+20 (mod 3) & 21 (mod 3 ) & 0 (mod 3) => 10^21+20*3
=> 10^21+20*2.3=6 => 10^21+20*6
( dấu * là dấu chia hết nhé)
a, 8^8 + 2^20
ta có : 8^4 & (-1) (mod 17) => 8^8 & (-1)^2 (mod 17) & 1 (mod 17)
2^2 & (-1) (mod 17) => 2^16 & (-1) ^4 (mod 17) & 1 ( mod 17) => 2^20 & 1.2^4 (mod 17) & 16 (mod 17)
=> 8^8 + 2^20 & 1+16 (mod 17) & 0 ( mod 17 )
vậy 8^8 + 2^20 * 17
b, bạn ơi 10^2015 chia 18 dư 10
c, 10 & 4 (mod 6) => 10^21 & 4^21 (mod 6)
a) ta có: x+16= (x+1)+15
mà x+1 chia hết cho x+1
suy ra 15 chia hết cho x+1
suy ra x+1 thuộc Ư(15)
Ư(15)= 1;3;5;15
TH1: x+1=1 suy ra x=0
TH2: x+1=3 suy ra x=2
TH3: x+1 = 5 suy ra x =4
TH4 x+1 = 15 suy ra x=14
Vậy x=0;2;4 hoặc 14
b) x lớn nhất và 36;45;18 chia hết cho x
suy ra x thuộc ƯCLN(36;45;18)
Ta có: 36= 3^2.2^2
45= 5.3^2
18=3^2.2
suy ra ƯCLN(36;45;18) = 3^2=9
suy ra x=9
Vậy x=9
c) 150;84;30 chia hết cho x suy ra x thuộc ƯC (150;84;30)
ta có: 150=5^2.3.2
84=7.3.2^2
30=5.3.2
suy ra ƯCLN(150;84;30)=2.3=6
Ư(6)= x nên x nhận các giá trị là 1;2;3;6
mà 0<x<16 nên x =1;2;3;6
Vậy x = 1;2;3;6
d) 10^15+8 = 100....000 + 8 ( có 15 số 0)
= 100....0008
Vì tận cùng là 8 nên 10^15+8 chia hết cho 2
Vì tổng các chữ số là 9 nên 10^15 chia hết cho 9
Vậy 10615 chia hết cho 2 và 9
b2) Nhóm 2 số 1 cặp, ta có:
A= 2.(1+2) + 2^3 . (1+2) + .....+ 2^2009. (1+2)
A= 2.3+2^3.3+...+2^2009.3
A= 3. ( 2+2^3+...+2^2009) chia hết cho 3
Vậy A chia hết cho 3
Nhóm 3 số 1 cặp
A= 2.(1+2+2^2) + 2^4.(1+2+2^2)+....+2^2008. ( 1+2+2^2)
A= 2.7+2^3.7+...+2^2008.7
A= 7. (2+2^4+...+ 2^2008) chia hết cho 7
Vậy A chia hết cho 7
b) 2.A= 2.(1+2+2^2+...+2^2010)
2.A= 2+2^2+2^3+...+2^2010+2011
2.A - A = (2+2^2+2^3+...+2^2011) - (1+2+2^2+...+2^2010)
1.A = 2^2011 - 1
Ta thấy: A= 2^2011-1 B= 2^2011-1
suy ra A=B
Vậy A=B
c) A<B
\(A=2+2^2+2^3+2^4+...+2^{2003}+2^{2004}\)
\(=2\cdot\left(1+2\right)+2^3\cdot\left(1+2\right)+...+2^{2003}\cdot\left(2+1\right)\)
\(=3\cdot\left(2+2^3+...+2^{2003}\right)⋮3\)