K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 4 2016

\(A=\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+...+\frac{1}{49.50}\)

=>\(A=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{49}-\frac{1}{50}\)

=>\(A=1-\frac{1}{50}=\frac{49}{50}\)

mà A=49/50 

=>1/26+1/27+...+1/50 =49/50

4 tháng 4 2016

49/50 ban oi

3 tháng 9 2016

a)A = 1 / (1*2) + 1 / (3*4) + ... + 1 / (99*100) > 1 / (1*2) + 1 / (3*4) = 1 / 2 + 1 / 12 = 7 / 12 ♦ 
A = 1 / (1*2) + 1 / (3*4) + ... + 1 / (99*100) = (1 - 1 / 2) + (1 / 3 - 1 / 4) + ... + (1 / 99 - 100) = 
(1 - 1 / 2 + 1 / 3) - (1 / 4 - 1 / 5) - (1 / 6 - 1 / 7) - ... - (1 / 98 - 1 / 99) - 1 / 100 < 
1 - 1 / 2 + 1 / 3 = 5 / 6 ♥ 
♦, ♥ => 7 / 12 < A < 5 / 6

b)ta có:

1/1.2+1/3.4+1/5.6+...+1/49.50

=>1-1/2+1/3-1/4+1/5-1/6+...+1/49-1/50

=>(1+1/3+1/5+1/7+...+1/49)-(1/2+1/4+1/6+...+1/50)

=>(1+1/2+1/3+...+1/49+1/50)-(1/2+1/4+1/6+...+1/50).2

=>(1+1/2+1/3+...+1/49+1/50) -( 1+1/2+1/3+...+1/25)

=>1/26+1/27+1/28+...+1/50=1/26+1/27+1/28+...+1/50

hay 1/1.2+1/3.4+1/5.6+...+1/49.50=1/26+1/27+1/28+...+1/50

5 tháng 2 2017

đề sai
 

24 tháng 8 2016

ta có:

1/1.2+1/3.4+1/5.6+...+1/49.50

=>1-1/2+1/3-1/4+1/5-1/6+...+1/49-1/50

=>(1+1/3+1/5+1/7+...+1/49)-(1/2+1/4+1/6+...+1/50)

=>(1+1/2+1/3+...+1/49+1/50)-(1/2+1/4+1/6+...+1/50).2

=>(1+1/2+1/3+...+1/49+1/50) -( 1+1/2+1/3+...+1/25)

=>1/26+1/27+1/28+...+1/50=1/26+1/27+1/28+...+1/50

hay 1/1.2+1/3.4+1/5.6+...+1/49.50=1/26+1/27+1/28+...+1/50

10 tháng 10 2017

bài này dễ ợt mình không làm đau

12 tháng 9 2017

Ta có :

\(\dfrac{1}{1.2}+\dfrac{1}{3.4}+\dfrac{1}{5.6}+.........+\dfrac{1}{49.50}\)

\(=1-\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{4}+.........+\dfrac{1}{49}-\dfrac{1}{50}\)

\(=\left(1+\dfrac{1}{3}+\dfrac{1}{5}+......+\dfrac{1}{49}\right)-\left(\dfrac{1}{2}+\dfrac{1}{4}+.......+\dfrac{1}{50}\right)\)

\(=\left(1+\dfrac{1}{2}+.......+\dfrac{1}{49}+\dfrac{1}{50}\right)-2\left(\dfrac{1}{2}+\dfrac{1}{4}+......+\dfrac{1}{50}\right)\)

\(=\left(1+\dfrac{1}{2}+.......+\dfrac{1}{50}\right)-\left(1+\dfrac{1}{2}+.....+\dfrac{1}{25}\right)\)

\(=\dfrac{1}{26}+\dfrac{1}{27}+......+\dfrac{1}{50}\)

Vậy ...

12 tháng 9 2017

Đặt:

\(PHUCDZ=\dfrac{1}{1.2}+\dfrac{1}{3.4}+\dfrac{1}{5.6}+...+\dfrac{1}{49.50}\)

\(PHUCDZ=1-\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{5}-\dfrac{1}{6}+...+\dfrac{1}{49}-\dfrac{1}{50}\)

\(PHUCDZ=\left(1+\dfrac{1}{3}+\dfrac{1}{5}+...+\dfrac{1}{49}\right)-\left(\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{1}{6}+....+\dfrac{1}{50}\right)\)

\(PHUCDZ=\left(1+\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+\dfrac{1}{5}+\dfrac{1}{6}+...+\dfrac{1}{49}+\dfrac{1}{50}\right)-2\left(\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{1}{6}+...+\dfrac{1}{50}\right)\)

\(PHUCDZ=\left(1+\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+\dfrac{1}{5}+\dfrac{1}{6}+...+\dfrac{1}{49}+\dfrac{1}{50}\right)-\left(1+\dfrac{1}{2}+\dfrac{1}{3}+....+\dfrac{1}{25}\right)\)

\(PHUCDZ=\dfrac{1}{26}+\dfrac{1}{27}+...+\dfrac{1}{50}\)

Đặt \(PHUCMAXDZ=\dfrac{1}{26}+\dfrac{1}{27}+...+\dfrac{1}{50}\)

\(PHUCDZ=PHUCMAXDZ\) vậy ta có \(đpcm\)

19 tháng 6 2016

\(\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+...+\frac{1}{49.50}\)

\(=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+....+\frac{1}{49}-\frac{1}{50}\)

\(=\left(1+\frac{1}{3}+\frac{1}{5}+....+\frac{1}{49}\right)-\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+.....+\frac{1}{50}\right)\)

\(=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+...+\frac{1}{49}+\frac{1}{50}\right)-2\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+....+\frac{1}{50}\right)\)

\(=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+....+\frac{1}{49}+\frac{1}{50}-1-\frac{1}{2}-\frac{1}{3}-....-\frac{1}{25}\)

\(=\frac{1}{26}+\frac{1}{27}+\frac{1}{28}+......+\frac{1}{50}\)  (đpcm)

19 tháng 6 2016

Ta có:

1/1.2 + 1/3.4 + 1/5.6 + ... + 1/49.50

= 1 - 1/2 + 1/3 - 1/4 + 1/5 - 1/6 + ... + 1/49 - 1/50

= (1 + 1/3 + 1/5 + ... + 1/49) - (1/2 + 1/4 + 1/6 + ... + 1/50)

= (1 + 1/2 + 1/3 + 1/4 + 1/5 + 1/6 + ... + 1/49 + 1/50) - 2.(1/2 + 1/4 + 1/6 + ... + 1/50)

= (1 + 1/2 + 1/3 + 1/4 + 1/5 + 1/6 + ... + 1/49 + 1/50) - (1 + 1/2 + 1/3 + ... + 1/25)

= 1/26 + 1/27 + 1/28 + ... + 1/50

=> đpcm

4 tháng 11 2018

\(\frac{1}{1\cdot2}+\frac{1}{3+4}+...+\frac{1}{49\cdot50}\)

\(=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{49}-\frac{1}{50}\)

\(=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{50}\right)-2\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{50}\right)\)

\(=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{50}-1-\frac{1}{2}-\frac{1}{3}-...-\frac{1}{25}\)

\(=\frac{1}{26}+\frac{1}{27}+...+\frac{1}{50}\left(đpcm\right)\)